Extending statistical models for source attribution of zoonotic diseases: a study of campylobacteriosis.

Sih-Jing Liao, Jonathan Marshall, Martin L Hazelton, Nigel P French
Author Information
  1. Sih-Jing Liao: 1 School of Fundamental Sciences, Massey University , Palmerston North 4442 , New Zealand.
  2. Jonathan Marshall: 1 School of Fundamental Sciences, Massey University , Palmerston North 4442 , New Zealand.
  3. Martin L Hazelton: 1 School of Fundamental Sciences, Massey University , Palmerston North 4442 , New Zealand.
  4. Nigel P French: 2 mEpiLab, Infectious Disease Research Centre, School of Veterinary Science, Massey University , Palmerston North 4442 , New Zealand.

Abstract

Preventing and controlling zoonoses through the design and implementation of public health policies requires a thorough understanding of transmission pathways. Modelling jointly the epidemiological data and genetic information of microbial isolates derived from cases provides a methodology for tracing back the source of infection. In this paper, the attribution probability for human cases of campylobacteriosis for each source, conditional on the extent to which each case resides in a rural compared to urban environment, is estimated. A model that incorporates genetic data and evolutionary processes is applied alongside a newly developed genetic-free model. We show that inference from each model is comparable except for rare microbial genotypes. Further, the effect of 'rurality' may be modelled linearly on the logit scale, with increasing rurality leading to the increasing likelihood of ruminant-sourced campylobacteriosis.

Keywords

References

  1. PLoS Genet. 2008 Sep 26;4(9):e1000203 [PMID: 18818764]
  2. J R Soc Interface. 2019 Jan 31;16(150):20180534 [PMID: 30958154]
  3. Appl Environ Microbiol. 2009 Oct;75(19):6038-46 [PMID: 19648367]
  4. Epidemiol Infect. 2005 Dec;133(6):1081-7 [PMID: 16274505]
  5. Clin Infect Dis. 2013 Dec;57(11):1600-6 [PMID: 24014733]
  6. Epidemiol Infect. 2010 Oct;138(10):1372-83 [PMID: 20141645]
  7. Appl Environ Microbiol. 2003 Dec;69(12):7409-13 [PMID: 14660392]
  8. Euro Surveill. 2013 Jan 17;18(3): [PMID: 23351655]
  9. Lancet. 1998 Aug 22;352(9128):635-41 [PMID: 9746040]
  10. PLoS One. 2013 Dec 26;8(12):e83731 [PMID: 24386265]
  11. J Clin Microbiol. 2001 Jan;39(1):14-23 [PMID: 11136741]
  12. Trends Microbiol. 2003 Oct;11(10):479-87 [PMID: 14557031]
  13. Proc Biol Sci. 2008 Apr 22;275(1637):887-95 [PMID: 18230598]
  14. PLoS Comput Biol. 2017 May 30;13(5):e1005564 [PMID: 28558033]
  15. Philos Trans R Soc Lond B Biol Sci. 2014 May 12;369(1645):20130426 [PMID: 24821913]
  16. Prev Vet Med. 2011 Dec 1;102(3):242-53 [PMID: 21872952]
  17. Epidemiol Infect. 2012 Sep;140(9):1663-77 [PMID: 22050713]
  18. Risk Anal. 2004 Feb;24(1):255-69 [PMID: 15028016]
  19. PLoS Comput Biol. 2012;8(11):e1002768 [PMID: 23166481]
  20. Emerg Infect Dis. 2011 Jun;17(6):1007-15 [PMID: 21749761]
  21. Infect Genet Evol. 2009 Dec;9(6):1311-9 [PMID: 19778636]
  22. Risk Anal. 2009 Jul;29(7):970-84 [PMID: 19486473]
  23. Front Microbiol. 2018 Sep 03;9:1983 [PMID: 30233509]

MeSH Term

Animals
Campylobacter
Campylobacter Infections
Humans
Models, Biological
Models, Statistical
Ruminants
Rural Population
Zoonoses

Word Cloud

Created with Highcharts 10.0.0sourcemodelgeneticattributioncampylobacteriosisdatamicrobialcasesincreasingPreventingcontrollingzoonosesdesignimplementationpublichealthpoliciesrequiresthoroughunderstandingtransmissionpathwaysModellingjointlyepidemiologicalinformationisolatesderivedprovidesmethodologytracingbackinfectionpaperprobabilityhumanconditionalextentcaseresidesruralcomparedurbanenvironmentestimatedincorporatesevolutionaryprocessesappliedalongsidenewlydevelopedgenetic-freeshowinferencecomparableexceptraregenotypeseffect'rurality'maymodelledlinearlylogitscaleruralityleadinglikelihoodruminant-sourcedExtendingstatisticalmodelszoonoticdiseases:studyCampylobacterDICDirichlet

Similar Articles

Cited By