Nutritional Ketoacidosis During Incremental Exercise in Healthy Athletes.

David J Dearlove, Olivia K Faull, Edward Rolls, Kieran Clarke, Pete J Cox
Author Information
  1. David J Dearlove: Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, United Kingdom.
  2. Olivia K Faull: Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, United Kingdom.
  3. Edward Rolls: Mathematical Institute, University of Oxford, Oxford, United Kingdom.
  4. Kieran Clarke: Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, United Kingdom.
  5. Pete J Cox: Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, United Kingdom.

Abstract

Ketosis, achieved through ingestion of ketone esters, may influence endurance exercise capacity by altering substrate metabolism. However, the effects of ketone consumption on acid-base status and subsequent metabolic and respiratory compensations are poorly described. Twelve athletically trained individuals completed an incremental bicycle ergometer exercise test to exhaustion following the consumption of either a ketone ester [-3-hydroxybutyrate--1,3-butanediol] or a taste-matched control drink (bitter flavoured water) in a blinded, cross-over study. Respiratory gases and arterialised blood gas samples were taken at rest and at regular intervals during exercise. Ketone ester consumption increased blood D-β-hydroxybutyrate concentration from 0.2 to 3.7 mM/L ( < 0.01), causing significant falls versus control in blood pH to 7.37 and bicarbonate to 18.5 mM/L before exercise. To compensate for ketoacidosis, minute ventilation was modestly increased ( < 0.05) with non-linearity in the ventilatory response to exercise (ventilatory threshold) occurring at a 22 W lower workload ( < 0.05). Blood pH and bicarbonate concentrations were the same at maximal exercise intensities. There was no difference in exercise performance having consumed the ketone ester or control drink. Athletes compensated for the greater acid load caused by ketone ester ingestion by elevating minute ventilation and earlier hyperventilation during incremental exercise.

Keywords

References

  1. Clin Physiol. 1992 Sep;12(5):537-52 [PMID: 1395446]
  2. Clin J Am Soc Nephrol. 2007 Jan;2(1):162-74 [PMID: 17699401]
  3. J Sports Sci. 2007 Oct;25(12):1403-9 [PMID: 17786693]
  4. Clin Pediatr (Phila). 2009 Mar;48(2):135-44 [PMID: 19023105]
  5. Med Sci Sports Exerc. 1991 May;23(5):625-30 [PMID: 2072842]
  6. Anaesthesia. 2011 Feb;66(2):111-23 [PMID: 21254986]
  7. Eur J Appl Physiol Occup Physiol. 1989;58(8):797-802 [PMID: 2548862]
  8. Lung. 2015 Dec;193(6):939-45 [PMID: 26410589]
  9. Cell Metab. 2016 Aug 9;24(2):256-68 [PMID: 27475046]
  10. Front Physiol. 2017 Oct 30;8:848 [PMID: 29163194]
  11. J Appl Physiol (1985). 1986 Jun;60(6):2020-7 [PMID: 3087938]
  12. Ergonomics. 1988 Nov;31(11):1639-45 [PMID: 3229410]
  13. J Appl Physiol. 1973 Aug;35(2):236-43 [PMID: 4723033]
  14. N Engl J Med. 1970 Mar 19;282(12):668-75 [PMID: 4915800]
  15. J Clin Invest. 1967 Oct;46(10):1589-95 [PMID: 6061736]
  16. J Appl Physiol Respir Environ Exerc Physiol. 1984 Nov;57(5):1558-63 [PMID: 6520052]
  17. J Appl Physiol Respir Environ Exerc Physiol. 1983 Jul;55(1 Pt 1):225-9 [PMID: 6885575]
  18. Physiol Rev. 1980 Jan;60(1):143-87 [PMID: 6986618]
  19. Clin Sci (Lond). 1981 Sep;61(3):331-8 [PMID: 7261554]

Word Cloud

Created with Highcharts 10.0.0exerciseketoneester0consumptioncontrolblood<ventilatoryingestionrespiratoryincrementaldrinkincreased7mM/LpHbicarbonateketoacidosisminuteventilation05thresholdAthletesKetosisachievedestersmayinfluenceendurancecapacityalteringsubstratemetabolismHowevereffectsacid-basestatussubsequentmetaboliccompensationspoorlydescribedTwelveathleticallytrainedindividualscompletedbicycleergometertestexhaustionfollowingeither[-3-hydroxybutyrate--13-butanediol]taste-matchedbitterflavouredwaterblindedcross-overstudyRespiratorygasesarterialisedgassamplestakenrestregularintervalsKetoneD-β-hydroxybutyrateconcentration2301causingsignificantfallsversus37185compensatemodestlynon-linearityresponseoccurring22WlowerworkloadBloodconcentrationsmaximalintensitiesdifferenceperformanceconsumedcompensatedgreateracidloadcausedelevatingearlierhyperventilationNutritionalKetoacidosisIncrementalExerciseHealthylactateaccumulationcompensation

Similar Articles

Cited By