Identification of Prognostic Alternative Splicing Signature in Breast Carcinoma.

Dong Zhang, Yi Duan, Jinjing Cun, Qifeng Yang
Author Information
  1. Dong Zhang: Department of Breast Surgery, Qilu Hospital, Shandong University, Jinan, China.
  2. Yi Duan: Department of Breast Surgery, Qilu Hospital, Shandong University, Jinan, China.
  3. Jinjing Cun: Department of Breast Surgery, Qilu Hospital, Shandong University, Jinan, China.
  4. Qifeng Yang: Department of Breast Surgery, Qilu Hospital, Shandong University, Jinan, China.

Abstract

BACKGROUND: Increasing evidence indicated a close relationship between aberrant splicing variants and carcinoma, whereas comprehensive analysis of prognostic alternative splicing (AS) profiling in breast Cancer (BRCA) is lacking and largely unknown.
METHODS: RNA-seq data and corresponding clinical information of BRCA patients were obtained and integrated from The Cancer Genome Atlas (TCGA). Then SpliceSeq software was used to assess seven AS types and calculate the Percent Spliced In (PSI) value. Univariate followed by stepwise multivariate Cox regression analyses identified survival associated AS events and constructed the AS signature, which were further sent for enrichment analysis, respectively. Besides, the splicing correlation network was constructed. Additionally, nomogram incorporating AS signature and clinicopathological characteristics was developed and its efficacy was evaluated with respect to discrimination, calibration and clinical utility.
RESULTS: A total of 45,421 AS events were detected, among which 3071 events were found associated with overall survival (OS) after strict filtering. Parent genes of these prognostic events were involved in BRCA-related processes including NF-kappaB and HIF-1 signaling pathway. Besides, the final prognostic signature built with 20 AS events performed well with an area under the curve (AUC) of receiver operating characteristic (ROC) curve up to 0.957 for 5 years. And gene set enrichment analysis (GSEA) also confirmed the candidate 20 AS events contributed to progression of BRCA. Moreover, the nomogram that incorporated 20-AS-event-based classifier, age, pathological stage and Her-2 status showed good calibration and moderate discrimination, with C-index of 0.883 (95% CI, 0.844-0.921). Decision curve analysis (DCA) confirmed more benefit was added to survival prediction with our nomogram, especially in 5 or 8 years with threshold probability up to 80%. Finally, splicing correlation network revealed an obvious regulatory pattern of prognostic splicing factors (SF) in BRCA.
CONCLUSION: This study provided a systematic portrait of survival-associated AS events involved in BRCA and further presented a AS-clinicopathological nomogram, which could be conveniently used to assist the individualized prediction of long-term survival probability for BRCA patients. And a series of bioinformatic analysis provided a promising perspective for further uncovering the underlying mechanisms of AS events and validating therapeutic targets for BRCA.

Keywords

References

  1. J Natl Cancer Inst. 2003 Oct 1;95(19):1482-5 [PMID: 14519755]
  2. Nature. 2006 Nov 30;444(7119):580-6 [PMID: 17065982]
  3. Genome. 2007 May;50(5):451-62 [PMID: 17612614]
  4. Biometrics. 2008 Dec;64(4):1263-9 [PMID: 18325074]
  5. Genome Biol. 2011;12(1):R9 [PMID: 21251333]
  6. J Clin Invest. 2011 Mar;121(3):1064-74 [PMID: 21393860]
  7. BMC Med Inform Decis Mak. 2011 Jun 22;11:45 [PMID: 21696604]
  8. PLoS Genet. 2011 Aug;7(8):e1002218 [PMID: 21876675]
  9. Hum Mutat. 2012 Jan;33(1):81-5 [PMID: 21922594]
  10. Oncogene. 2012 Jun 28;31(26):3190-201 [PMID: 22037216]
  11. OMICS. 2012 May;16(5):284-7 [PMID: 22455463]
  12. Nat Commun. 2012 Jun 06;3:883 [PMID: 22673910]
  13. Bioinformatics. 2012 Sep 15;28(18):2385-7 [PMID: 22820202]
  14. Gene. 2013 Feb 1;514(1):1-30 [PMID: 22909801]
  15. Nature. 2012 Oct 4;490(7418):61-70 [PMID: 23000897]
  16. BMC Bioinformatics. 2013 Jan 16;14:7 [PMID: 23323831]
  17. Nat Rev Mol Cell Biol. 2013 Mar;14(3):153-65 [PMID: 23385723]
  18. J Natl Cancer Inst. 2013 Apr 17;105(8):573-9 [PMID: 23411593]
  19. Stat Med. 2013 Dec 30;32(30):5381-97 [PMID: 24027076]
  20. CA Cancer J Clin. 2014 Jan-Feb;64(1):52-62 [PMID: 24114568]
  21. J Exp Clin Cancer Res. 2014 Oct 06;33:84 [PMID: 25288503]
  22. Genome Biol. 2014;15(12):550 [PMID: 25516281]
  23. Nucleic Acids Res. 2015 Apr 20;43(7):e47 [PMID: 25605792]
  24. Lancet Oncol. 2015 Apr;16(4):e173-80 [PMID: 25846097]
  25. J Biol Chem. 2015 Oct 16;290(42):25717-27 [PMID: 26304115]
  26. J Drug Target. 2016;24(6):492-502 [PMID: 26548930]
  27. Nucleic Acids Res. 2016 May 5;44(8):e71 [PMID: 26704973]
  28. Cell Syst. 2015 Dec 23;1(6):417-425 [PMID: 26771021]
  29. Ann Transl Med. 2016 Apr;4(7):136 [PMID: 27162786]
  30. Elife. 2016 May 25;5: [PMID: 27223328]
  31. Nat Commun. 2016 Jun 09;7:11548 [PMID: 27279334]
  32. RNA. 2016 Sep;22(9):1285-301 [PMID: 27530828]
  33. N Engl J Med. 2016 Aug 25;375(8):717-29 [PMID: 27557300]
  34. J Clin Oncol. 2017 Mar;35(7):751-758 [PMID: 27870562]
  35. Ann Transl Med. 2016 Dec;4(23):461 [PMID: 28090517]
  36. Mol Cancer. 2017 Jan 30;16(1):8 [PMID: 28137272]
  37. Cancer Lett. 2017 Jun 28;396:53-65 [PMID: 28315432]
  38. Oncotarget. 2017 Jul 18;8(29):48471-48487 [PMID: 28476046]
  39. Nat Rev Mol Cell Biol. 2017 Jul;18(7):437-451 [PMID: 28488700]
  40. Ann Transl Med. 2017 May;5(10):211 [PMID: 28603726]
  41. Oncogene. 2018 Jan 4;37(1):86-94 [PMID: 28869607]
  42. Nat Rev Mol Cell Biol. 2017 Nov;18(11):655-670 [PMID: 28951565]
  43. Ann Oncol. 2018 May 1;29(5):1203-1210 [PMID: 29635390]
  44. Int J Cancer. 2018 Nov 1;143(9):2150-2160 [PMID: 29707762]
  45. N Engl J Med. 2018 Jul 12;379(2):111-121 [PMID: 29860917]
  46. Elife. 2018 Jul 30;7: [PMID: 30059005]
  47. EBioMedicine. 2018 Aug;34:46-60 [PMID: 30131306]
  48. EBioMedicine. 2018 Oct;36:183-195 [PMID: 30243491]
  49. Clin Chem Lab Med. 2018 Dec 19;57(2):276-287 [PMID: 30325729]
  50. Pathol Res Pract. 2019 Feb;215(2):251-255 [PMID: 30420102]
  51. RNA Biol. 2018 Nov 23;: [PMID: 30468106]
  52. Theranostics. 2018 Nov 29;8(22):6248-6262 [PMID: 30613295]
  53. Genes Dev. 2019 Feb 1;33(3-4):166-179 [PMID: 30692202]
  54. J Clin Oncol. 1996 Aug;14(8):2197-205 [PMID: 8708708]

Word Cloud

Created with Highcharts 10.0.0ASanalysiseventsBRCAsplicingprognosticnomogramsurvivalsignatureenrichmentcurve0genesetcarcinomaalternativebreastclinicalpatientsusedassociatedconstructedBesidescorrelationnetworkdiscriminationcalibrationinvolved205yearsconfirmedpredictionprobabilityprovidedbioinformaticBACKGROUND:IncreasingevidenceindicatedcloserelationshipaberrantvariantswhereascomprehensiveprofilingcancerlackinglargelyunknownMETHODS:RNA-seqdatacorrespondinginformationobtainedintegratedCancerGenomeAtlasTCGASpliceSeqsoftwareassessseventypescalculatePercentSplicedPSIvalueUnivariatefollowedstepwisemultivariateCoxregressionanalysesidentifiedsentrespectivelyAdditionallyincorporatingclinicopathologicalcharacteristicsdevelopedefficacyevaluatedrespectutilityRESULTS:total45421detectedamong3071foundoverallOSstrictfilteringParentgenesBRCA-relatedprocessesincludingNF-kappaBHIF-1signalingpathwayfinalbuiltperformedwellareaAUCreceiveroperatingcharacteristicROC957GSEAalsocandidatecontributedprogressionMoreoverincorporated20-AS-event-basedclassifieragepathologicalstageHer-2statusshowedgoodmoderateC-index88395%CI844-0921DecisionDCAbenefitaddedespecially8threshold80%FinallyrevealedobviousregulatorypatternfactorsSFCONCLUSION:studysystematicportraitsurvival-associatedpresentedAS-clinicopathologicalconvenientlyassistindividualizedlong-termseriespromisingperspectiveuncoveringunderlyingmechanismsvalidatingtherapeutictargetsIdentificationPrognosticAlternativeSplicingSignatureBreastCarcinomavariationmodel

Similar Articles

Cited By (23)