Plasmonic Schottky photodetector with metal stripe embedded into semiconductor and with a CMOS-compatible titanium nitride.

Jacek Gosciniak, Fatih B Atar, Brian Corbett, Mahmoud Rasras
Author Information
  1. Jacek Gosciniak: New York University Abu Dhabi, Saadiyat Island, PO Box 129188, Abu Dhabi, UAE. jg5648@nyu.edu.
  2. Fatih B Atar: Tyndall National Institute, Lee Maltings, Cork, Ireland.
  3. Brian Corbett: Tyndall National Institute, Lee Maltings, Cork, Ireland.
  4. Mahmoud Rasras: New York University Abu Dhabi, Saadiyat Island, PO Box 129188, Abu Dhabi, UAE.

Abstract

Here we propose an original waveguide-integrated plasmonic Schottky photodetector that takes full advantage of a thin metal stripe embedded entirely into a semiconductor. The photodetector is based on the long-range dielectric-loaded surface plasmon polariton waveguide with a metal stripe deposited on top of a semiconductor rib and covered by another semiconductor. As the metal stripe is entirely surrounded by semiconductor, all hot electrons with appropriate k-vectors can participate in transitions that highly enhances the electron transfer, and consequently the internal quantum efficiency. In addition, a high coupling efficiency from the photonic waveguide to the photodetector is simulated exceeding 90 % which enhances the external quantum efficiency. Calculations show that a responsivity exceeding 0.5 A/W can be achieved at telecom wavelength of 1550 nm and the bandwidth can exceed 100 GHz. Furthermore, it is shown that titanium nitride is a perfect material for the photodetector as it provides a low Fermi energy and long electron mean free path that enhance the hot electron transfer to the semiconductor. In addition, it shows reasonable metallic behavior and CMOS compatibility. Measurements showed that the Schottky barrier height between titanium nitride and p-doped silicon reaches 0.69-0.70 eV that matches the optimum signal-to-noise ratio operation calculated at 0.697 eV.

References

  1. Nano Lett. 2016 May 11;16(5):3005-13 [PMID: 27053042]
  2. Nano Lett. 2013 Apr 10;13(4):1687-92 [PMID: 23452192]
  3. Opt Express. 2010 Mar 1;18(5):4986-99 [PMID: 20389510]
  4. Opt Lett. 2010 Feb 15;35(4):529-31 [PMID: 20160807]
  5. Nature. 2003 Aug 14;424(6950):824-30 [PMID: 12917696]
  6. Science. 2008 Apr 11;320(5873):206-9 [PMID: 18339901]
  7. Opt Express. 2010 Oct 25;18(22):23009-15 [PMID: 21164640]
  8. Appl Opt. 2017 Apr 20;56(12):3329-3334 [PMID: 28430253]
  9. Nat Nanotechnol. 2015 Jan;10(1):25-34 [PMID: 25559968]
  10. Adv Mater. 2013 Jun 25;25(24):3264-94 [PMID: 23674224]
  11. Nano Lett. 2011 Jun 8;11(6):2219-24 [PMID: 21604793]
  12. Opt Express. 2017 Mar 6;25(5):5244-5254 [PMID: 28380788]
  13. Nature. 2011 Jun 2;474(7349):64-7 [PMID: 21552277]
  14. Nat Commun. 2014 Dec 16;5:5788 [PMID: 25511713]
  15. Nanotechnology. 2013 May 10;24(18):185202 [PMID: 23575218]
  16. Sci Rep. 2013;3:1897 [PMID: 23719514]
  17. Opt Express. 2012 Dec 17;20(27):28594-602 [PMID: 23263097]
  18. Nat Nanotechnol. 2013 Nov;8(11):845-52 [PMID: 24141538]
  19. Nat Nanotechnol. 2013 Nov;8(11):799-800 [PMID: 24141537]

Word Cloud

Created with Highcharts 10.0.0semiconductorphotodetectormetalstripeSchottkycanelectronefficiency0titaniumnitrideembeddedentirelywaveguidehotenhancestransferquantumadditionexceedingeVproposeoriginalwaveguide-integratedplasmonictakesfulladvantagethinbasedlong-rangedielectric-loadedsurfaceplasmonpolaritondepositedtopribcoveredanothersurroundedelectronsappropriatek-vectorsparticipatetransitionshighlyconsequentlyinternalhighcouplingphotonicsimulated90%externalCalculationsshowresponsivity5A/Wachievedtelecomwavelength1550nmbandwidthexceed100GHzFurthermoreshownperfectmaterialprovideslowFermienergylongmeanfreepathenhanceshowsreasonablemetallicbehaviorCMOScompatibilityMeasurementsshowedbarrierheightp-dopedsiliconreaches69-070matchesoptimumsignal-to-noiseratiooperationcalculated697PlasmonicCMOS-compatible

Similar Articles

Cited By