Parallel sequencing of porA reveals a complex pattern of Campylobacter genotypes that differs between broiler and broiler breeder chickens.

Frances M Colles, Stephen G Preston, Kenneth Klingenberg Barfod, Patrik G Flammer, Martin C J Maiden, Adrian L Smith
Author Information
  1. Frances M Colles: Department of Zoology, University of Oxford, The Peter Medawar Building for Pathogen Research, South Parks Road, Oxford, OX1 3SY, UK. frances.colles@zoo.ox.ac.uk. ORCID
  2. Stephen G Preston: Department of Zoology, University of Oxford, The Peter Medawar Building for Pathogen Research, South Parks Road, Oxford, OX1 3SY, UK.
  3. Kenneth Klingenberg Barfod: Department of Zoology, University of Oxford, The Peter Medawar Building for Pathogen Research, South Parks Road, Oxford, OX1 3SY, UK.
  4. Patrik G Flammer: Department of Zoology, University of Oxford, The Peter Medawar Building for Pathogen Research, South Parks Road, Oxford, OX1 3SY, UK. ORCID
  5. Martin C J Maiden: Department of Zoology, University of Oxford, The Peter Medawar Building for Pathogen Research, South Parks Road, Oxford, OX1 3SY, UK. ORCID
  6. Adrian L Smith: Department of Zoology, University of Oxford, The Peter Medawar Building for Pathogen Research, South Parks Road, Oxford, OX1 3SY, UK. adrian.smith@zoo.ox.ac.uk.

Abstract

Chicken meat represents an important source of Campylobacter infections of humans world-wide. A better understanding of Campylobacter epidemiology in commercial chicken flocks will facilitate the development of more effective intervention strategies. We developed a gene-specific parallel sequencing approach that efficiently indicated genetic diversity in farm-derived samples and revealed Campylobacter genotypes that would not be detected using microbiological culture. Parallel sequencing of the porA nucleotide fragment identified a different pattern of diversity in broiler flocks compared with broiler-breeder flocks at both individual bird and flock levels. Amongst the flocks tested, broiler flocks and individual birds were dominated by one or two porA fragment types whereas co-dominance with up to six porA fragment types was evident in breeder birds. A high proportion (83.6-93.3%) of porA variants were shared between broiler and breeder flocks. The porA-based diversity profiling could be a useful addition to the repertoire of tools employed to attribute potential sources of contamination for broiler flocks, including the environment, wild animals or other chickens. This approach can be extended to include other loci within Campylobacter and developed for molecular epidemiology studies of other bacterial species.

References

  1. Nucleic Acids Res. 2016 Jul 8;44(W1):W242-5 [PMID: 27095192]
  2. Int J Food Microbiol. 2018 Jun 2;274:20-30 [PMID: 29579648]
  3. Genes (Basel). 2012 Apr 12;3(2):261-77 [PMID: 24704917]
  4. Proc Biol Sci. 2010 Jun 7;277(1688):1635-41 [PMID: 20129981]
  5. J Clin Microbiol. 1991 May;29(5):1007-10 [PMID: 2056033]
  6. Epidemiol Infect. 2012 Jul;140(7):1227-35 [PMID: 21923970]
  7. Clin Infect Dis. 2009 Apr 15;48(8):1072-8 [PMID: 19275496]
  8. Mol Biol Evol. 2016 Jul;33(7):1870-4 [PMID: 27004904]
  9. Zoonoses Public Health. 2011 Aug;58(5):350-6 [PMID: 20880212]
  10. Gut Pathog. 2016 Nov 10;8:56 [PMID: 27843492]
  11. Front Microbiol. 2018 May 22;9:927 [PMID: 29872425]
  12. J Appl Microbiol. 2000 Nov;89(5):884-91 [PMID: 11119165]
  13. Future Microbiol. 2014;9(5):623-30 [PMID: 24957089]
  14. Poult Sci. 2013 May;92(5):1425-9 [PMID: 23571355]
  15. Prev Vet Med. 2013 Aug 1;111(1-2):100-11 [PMID: 23706344]
  16. New Microbiol. 2014 Oct;37(4):557-62 [PMID: 25387294]
  17. Environ Microbiol. 2008 Aug;10(8):2042-50 [PMID: 18412548]
  18. Nat Methods. 2016 Jul;13(7):581-3 [PMID: 27214047]
  19. Emerg Infect Dis. 2008 Oct;14(10):1620-2 [PMID: 18826829]
  20. Poult Sci. 2016 Mar;95(3):676-83 [PMID: 26628341]
  21. Bioinformatics. 2010 Oct 1;26(19):2460-1 [PMID: 20709691]
  22. Front Microbiol. 2017 Oct 10;8:1908 [PMID: 29067004]
  23. J Clin Microbiol. 1990 Sep;28(9):1903-5 [PMID: 2229371]
  24. Poult Sci. 2010 Jun;89(6):1144-55 [PMID: 20460660]
  25. Appl Environ Microbiol. 2016 Apr 04;82(8):2347-2355 [PMID: 26873321]
  26. Appl Environ Microbiol. 2011 Jun;77(11):3741-8 [PMID: 21460110]
  27. PLoS One. 2011;6(12):e22825 [PMID: 22174732]
  28. PLoS One. 2017 Aug 24;12(8):e0183790 [PMID: 28837643]
  29. PLoS One. 2014 Aug 29;9(8):e104905 [PMID: 25171228]
  30. Zoonoses Public Health. 2017 Jun;64(4):262-271 [PMID: 27770505]
  31. Appl Environ Microbiol. 2011 Dec;77(24):8605-14 [PMID: 21984249]
  32. Vector Borne Zoonotic Dis. 2012 Feb;12(2):89-98 [PMID: 22133236]
  33. J Clin Microbiol. 2017 Jul;55(7):2086-2097 [PMID: 28446571]
  34. Appl Environ Microbiol. 2003 Aug;69(8):4343-51 [PMID: 12902214]
  35. Poult Sci. 2015 Mar;94(3):447-53 [PMID: 25638473]
  36. J Clin Microbiol. 2001 Jan;39(1):14-23 [PMID: 11136741]
  37. PLoS Pathog. 2007 Nov;3(11):e175 [PMID: 18020703]
  38. Int J Food Microbiol. 2010 Feb 28;137(2-3):259-64 [PMID: 20071049]
  39. Microbiology (Reading). 2009 Dec;155(Pt 12):4145-4154 [PMID: 19744989]
  40. Poult Sci. 2009 Jun;88(6):1299-305 [PMID: 19439643]
  41. Poult Sci. 2008 Jul;87(7):1428-34 [PMID: 18577626]

Grants

  1. /Wellcome Trust
  2. 087622/Wellcome Trust
  3. BB/N023803/1/Biotechnology and Biological Sciences Research Council

MeSH Term

Animal Husbandry
Animals
Bacterial Proteins
Bacterial Typing Techniques
Base Sequence
Campylobacter
Chickens
Genotype
Molecular Epidemiology
Porins
Poultry Diseases

Chemicals

Bacterial Proteins
Porins

Word Cloud

Created with Highcharts 10.0.0flocksbroilerCampylobacterporAsequencingdiversityfragmentbreederepidemiologydevelopedapproachgenotypesParallelpatternindividualbirdstypeschickensChickenmeatrepresentsimportantsourceinfectionshumansworld-widebetterunderstandingcommercialchickenwillfacilitatedevelopmenteffectiveinterventionstrategiesgene-specificparallelefficientlyindicatedgeneticfarm-derivedsamplesrevealeddetectedusingmicrobiologicalculturenucleotideidentifieddifferentcomparedbroiler-breederbirdflocklevelsAmongsttesteddominatedonetwowhereasco-dominancesixevidenthighproportion836-933%variantssharedporA-basedprofilingusefuladditionrepertoiretoolsemployedattributepotentialsourcescontaminationincludingenvironmentwildanimalscanextendedincludelociwithinmolecularstudiesbacterialspeciesrevealscomplexdiffers

Similar Articles

Cited By