Draculab: A Python Simulator for Firing Rate Neural Networks With Delayed Adaptive Connections.

Sergio Verduzco-Flores, Erik De Schutter
Author Information
  1. Sergio Verduzco-Flores: Computational Neuroscience Unit, Okinawa Institute of Science and Technology, Okinawa, Japan.
  2. Erik De Schutter: Computational Neuroscience Unit, Okinawa Institute of Science and Technology, Okinawa, Japan.

Abstract

Draculab is a neural simulator with a particular use scenario: firing rate units with delayed connections, using custom-made unit and synapse models, possibly controlling simulated physical systems. Draculab also has a particular design philosophy. It aims to blur the line between users and developers. Three factors help to achieve this: a simple design using Python's data structures, extensive use of standard libraries, and profusely commented source code. This paper is an introduction to Draculab's architecture and philosophy. After presenting some example networks it explains basic algorithms and data structures that constitute the essence of this approach. The relation with other simulators is discussed, as well as the reasons why connection delays and interaction with simulated physical systems are emphasized.

Keywords

References

  1. J Neurosci. 2000 Jul 15;20(14):5503-15 [PMID: 10884334]
  2. Nature. 2000 Jul 20;406(6793):302-6 [PMID: 10917531]
  3. Am J Med. 1955 Nov;19(5):693-6 [PMID: 13268466]
  4. Annu Rev Neurosci. 2005;28:503-32 [PMID: 16033324]
  5. Neural Comput. 2006 Feb;18(2):245-82 [PMID: 16378515]
  6. PLoS Biol. 2006 Apr;4(4):e92 [PMID: 16529529]
  7. Neural Comput. 2006 Jun;18(6):1380-412 [PMID: 16764508]
  8. Chaos. 2006 Jun;16(2):026101 [PMID: 16822033]
  9. Science. 2006 Oct 6;314(5796):85-90 [PMID: 17023650]
  10. IEEE Trans Biomed Eng. 2007 Nov;54(11):1940-50 [PMID: 18018689]
  11. Neural Netw. 2008 Oct;21(8):1146-52 [PMID: 18684591]
  12. Neural Netw. 2008 Oct;21(8):1164-81 [PMID: 18783918]
  13. Cerebellum. 2008;7(4):567-71 [PMID: 18972182]
  14. Front Neuroinform. 2009 Jan 29;2:12 [PMID: 19198667]
  15. Psychol Res. 2009 Jul;73(4):527-44 [PMID: 19347360]
  16. Front Neurosci. 2009 Sep 15;3(2):192-7 [PMID: 20011141]
  17. J Neurosci Methods. 2010 Mar 30;187(2):280-8 [PMID: 20074588]
  18. Trends Cogn Sci. 1998 Sep 1;2(9):338-47 [PMID: 21227230]
  19. Trends Cogn Sci. 1998 Nov 1;2(11):455-62 [PMID: 21227277]
  20. Network. 2012;23(4):237-53 [PMID: 22994650]
  21. Front Neuroinform. 2013 Jun 11;7:10 [PMID: 23781198]
  22. Front Neuroinform. 2014 Jan 06;7:48 [PMID: 24431999]
  23. Neural Netw. 2015 Jan;61:85-117 [PMID: 25462637]
  24. Front Comput Neurosci. 2015 Mar 24;9:39 [PMID: 25852535]
  25. Front Neuroinform. 2015 Jul 31;9:19 [PMID: 26283957]
  26. Science. 1977 Jul 15;197(4300):287-9 [PMID: 267326]
  27. Neural Netw. 2016 Nov;83:1-10 [PMID: 27541049]
  28. Front Neuroinform. 2017 May 24;11:34 [PMID: 28596730]
  29. J Physiol. 1973 Apr;230(2):371-90 [PMID: 4708898]
  30. Br J Anaesth. 1970 Nov;42(11):967-78 [PMID: 5488360]
  31. J Math Biol. 1982;15(3):267-73 [PMID: 7153672]
  32. Proc Natl Acad Sci U S A. 1994 Aug 2;91(16):7797-801 [PMID: 8052662]

Word Cloud

Created with Highcharts 10.0.0DraculabneuralsimulatorparticularusefiringrateusingsimulatedphysicalsystemsdesignphilosophydatastructuresPythonscenario:unitsdelayedconnectionscustom-madeunitsynapsemodelspossiblycontrollingalsoaimsblurlineusersdevelopersThreefactorshelpachievethis:simplePython'sextensivestandardlibrariesprofuselycommentedsourcecodepaperintroductionDraculab'sarchitecturepresentingexamplenetworksexplainsbasicalgorithmsconstituteessenceapproachrelationsimulatorsdiscussedwellreasonsconnectiondelaysinteractionemphasizedDraculab:SimulatorFiringRateNeuralNetworksDelayedAdaptiveConnectionsadaptivesynapsesactivitytransmissiondelay

Similar Articles

Cited By