Activity of a Synthetic Peptide Targeting MgtC on Intramacrophage Survival and Biofilm Formation.

Malika Moussouni, Pauline Nogaret, Preeti Garai, Bérengère Ize, Eric Vivès, Anne-Béatrice Blanc-Potard
Author Information
  1. Malika Moussouni: Laboratoire de Dynamique des Interactions Membranaires Normales et Pathologiques, Université Montpellier, Montpellier, France.
  2. Pauline Nogaret: Laboratoire de Dynamique des Interactions Membranaires Normales et Pathologiques, Université Montpellier, Montpellier, France.
  3. Preeti Garai: Laboratoire de Dynamique des Interactions Membranaires Normales et Pathologiques, Université Montpellier, Montpellier, France.
  4. Bérengère Ize: Laboratoire d'Ingénierie des Systèmes Macromoléculaires, Institut de Microbiologie de la Méditerranée, CNRS & Aix-Marseille University of Marseille, Marseille, France.
  5. Eric Vivès: Centre de Recherche en Biologie cellulaire de Montpellier, CNRS UMR 5237, Montpellier, France.
  6. Anne-Béatrice Blanc-Potard: Laboratoire de Dynamique des Interactions Membranaires Normales et Pathologiques, Université Montpellier, Montpellier, France.

Abstract

Antivirulence strategies aim to target pathogenicity factors while bypassing the pressure on the bacterium to develop resistance. The MgtC membrane protein has been proposed as an attractive target that is involved in the ability of several major bacterial pathogens, including , to survive inside macrophages. In liquid culture, MgtC acts negatively on biofilm formation. However, a putative link between these two functions of MgtC in has not been experimentally addressed. In the present study, we first investigated the contribution of exopolysaccharides (EPS) in the intramacrophage survival defect and biofilm increase of mutant. Within infected macrophages, expression of EPS genes and was increased in a mutant strain comparatively to wild-type strain. However, the intramacrophage survival defect of mutant was not rescued upon introduction of or mutation, suggesting that MgtC intramacrophage role is unrelated to EPS production, whereas the increased biofilm formation of mutant was partially suppressed by introduction of mutation. We aimed to develop an antivirulence strategy targeting MgtC, by taking advantage of a natural antagonistic peptide, MgtR. Heterologous expression of in PAO1 was shown to reduce its ability to survive within macrophages. We investigated for the first time the biological effect of a synthetic MgtR peptide on . Exogenously added synthetic MgtR peptide lowered the intramacrophage survival of wild-type PAO1, thus mimicking the phenotype of an mutant as well as the effect of endogenously produced MgtR peptide. In correlation with this finding, addition of MgtR peptide to bacterial culture strongly reduced MgtC protein level, without reducing bacterial growth or viability, thus differing from classical antimicrobial peptides. On the other hand, the addition of exogenous MgtR peptide did not affect significantly biofilm formation, indicating an action toward EPS-independent phenotype rather than EPS-related phenotype. Cumulatively, our results show an antivirulence action of synthetic MgtR peptide, which may be more potent against acute infection, and provide a proof of concept for further exploitation of anti- strategies.

Keywords

References

  1. Biochim Biophys Acta Biomembr. 2017 Apr;1859(4):577-585 [PMID: 27580024]
  2. Proc Natl Acad Sci U S A. 2003 Jun 24;100(13):7907-12 [PMID: 12810959]
  3. Proc Natl Acad Sci U S A. 2015 Apr 21;112(16):5183-8 [PMID: 25848006]
  4. Clin Infect Dis. 2016 Jul 1;63(1):89-95 [PMID: 27025826]
  5. EMBO J. 1997 Sep 1;16(17):5376-85 [PMID: 9311997]
  6. Lancet Infect Dis. 2018 Mar;18(3):318-327 [PMID: 29276051]
  7. J Bacteriol. 2001 Feb;183(3):1047-57 [PMID: 11208804]
  8. J Mol Biol. 2014 Jan 23;426(2):436-46 [PMID: 24140750]
  9. Front Microbiol. 2015 Aug 20;6:851 [PMID: 26347731]
  10. EMBO J. 2008 Feb 6;27(3):546-57 [PMID: 18200043]
  11. Mol Microbiol. 2007 Jan;63(2):605-22 [PMID: 17176255]
  12. Infect Immun. 2005 May;73(5):3160-3 [PMID: 15845525]
  13. Mol Microbiol. 2009 Apr;72(1):5-11 [PMID: 19210615]
  14. Cell Microbiol. 2009 May;11(5):755-68 [PMID: 19207728]
  15. Proc Natl Acad Sci U S A. 2017 May 30;114(22):5689-5694 [PMID: 28512220]
  16. Mol Microbiol. 2009 Aug;73(4):622-38 [PMID: 19659934]
  17. Front Cell Infect Microbiol. 2016 May 17;6:52 [PMID: 27242970]
  18. PLoS Genet. 2009 Dec;5(12):e1000788 [PMID: 20041203]
  19. Front Microbiol. 2011 Aug 22;2:167 [PMID: 21991261]
  20. Trends Microbiol. 2007 Jun;15(6):252-6 [PMID: 17416526]
  21. J Bacteriol. 1996 Aug;178(16):4997-5004 [PMID: 8759866]
  22. Future Microbiol. 2016;11(2):215-25 [PMID: 26849775]
  23. Sci Rep. 2016 Jun 09;6:27675 [PMID: 27279369]
  24. Appl Environ Microbiol. 2006 Jan;72(1):298-305 [PMID: 16391057]
  25. Infect Immun. 2006 Jul;74(7):3727-41 [PMID: 16790745]
  26. Mol Microbiol. 2010 May;76(4):1020-33 [PMID: 20398218]
  27. Infect Immun. 2006 Oct;74(10):5477-86 [PMID: 16988222]
  28. Antimicrob Agents Chemother. 2013 May;57(5):2310-8 [PMID: 23478951]
  29. Microb Cell. 2015 Aug 13;2(9):353-355 [PMID: 28357311]
  30. Int J Mol Sci. 2013 Oct 18;14(10):20983-1005 [PMID: 24145749]
  31. Nat Rev Drug Discov. 2017 Jul;16(7):457-471 [PMID: 28337021]
  32. Environ Microbiol. 2011 Jul;13(7):1705-17 [PMID: 21605307]
  33. Cell. 2017 Oct 19;171(3):497 [PMID: 29053964]
  34. Br J Clin Pharmacol. 2015 Feb;79(2):208-15 [PMID: 24552512]
  35. Cell. 2013 Jul 3;154(1):146-56 [PMID: 23827679]
  36. Curr Top Microbiol Immunol. 2016;398:147-183 [PMID: 26942418]
  37. Appl Environ Microbiol. 2011 Aug;77(15):5238-46 [PMID: 21666010]
  38. Mol Microbiol. 2000 Mar;35(6):1375-82 [PMID: 10760138]
  39. PLoS Pathog. 2015 Jun 16;11(6):e1004969 [PMID: 26080006]
  40. Front Cell Infect Microbiol. 2016 Dec 27;6:194 [PMID: 28083516]
  41. Gene. 1991 Dec 20;109(1):137-41 [PMID: 1756974]
  42. F1000Res. 2017 Jul 28;6:1261 [PMID: 28794863]

MeSH Term

Biofilms
Cation Transport Proteins
Enzyme Inhibitors
Macrophages
Microbial Viability
Peptides
Pseudomonas aeruginosa

Chemicals

Cation Transport Proteins
Enzyme Inhibitors
Peptides

Word Cloud

Created with Highcharts 10.0.0MgtCpeptideMgtRmutantbiofilmEPSintramacrophagebacterialmacrophagesformationsurvivalantivirulencesyntheticphenotypestrategiestargetdevelopproteinabilitysurvivecultureHoweverfirstinvestigateddefectexpressionincreasedstrainwild-typeintroductionmutationstrategyPAO1effectthusadditionactionAntivirulenceaimpathogenicityfactorsbypassingpressurebacteriumresistancemembraneproposedattractiveinvolvedseveralmajorpathogensincludinginsideliquidactsnegativelyputativelinktwofunctionsexperimentallyaddressedpresentstudycontributionexopolysaccharidesincreaseWithininfectedgenescomparativelyrescueduponsuggestingroleunrelatedproductionwhereaspartiallysuppressedaimedtargetingtakingadvantagenaturalantagonisticHeterologousshownreducewithintimebiologicalExogenouslyaddedloweredmimickingwellendogenouslyproducedcorrelationfindingstronglyreducedlevelwithoutreducinggrowthviabilitydifferingclassicalantimicrobialpeptideshandexogenousaffectsignificantlyindicatingtowardEPS-independentratherEPS-relatedCumulativelyresultsshowmaypotentacuteinfectionprovideproofconceptexploitationanti-ActivitySyntheticPeptideTargetingIntramacrophageSurvivalBiofilmFormationPseudomonasaeruginosamacrophage

Similar Articles

Cited By (7)