Associations between urinary organophosphate ester metabolites and measures of adiposity among U.S. children and adults: NHANES 2013-2014.

M Boyle, J P Buckley, L Quirós-Alcalá
Author Information
  1. M Boyle: Maryland Institute of Applied Environmental Health, School of Public Health, University of Maryland, College Park, MD, USA.
  2. J P Buckley: Johns Hopkins University, Department of Environmental Health & Engineering, Department of Epidemiology, Baltimore, MD, USA.
  3. L Quirós-Alcalá: Maryland Institute of Applied Environmental Health, School of Public Health, University of Maryland, College Park, MD, USA. Electronic address: lquiros@umd.edu.

Abstract

BACKGROUND: Organophosphate esters (OPEs) are synthetic chemicals found in many consumer products, including furniture, electronics, processed foods, and building materials. Emerging in vitro and in vivo studies suggest that OPEs are metabolism disrupting compounds; however, epidemiologic studies investigating their associations with adiposity markers are sparse.
OBJECTIVE: We examined cross-sectional associations between OPE biomarkers and adiposity measures among U.S. children and adults participating in the National Health and Nutrition Examination Survey (NHANES: 2013-2014).
METHODS: Concentrations of five OPE metabolites were quantified in urine: diphenyl phosphate (DPHP), bis(1,3-dichloro-2-propyl) phosphate (BDCPP), bis(2-chloroethyl) phosphate (BCEP), dibutyl phosphate (DBUP), and bis(1-chloro-2-propyl) phosphate (BCPP). We conducted covariate-adjusted logistic and linear regressions to examine associations between log-transformed and dichotomized OPE metabolite concentrations and obesity, body mass index (BMI), and waist circumference (WC), separately among 784 children (6-19 years) and 1672 adults (≥20 years). We also assessed heterogeneity of associations by sex.
RESULTS: DBUP concentrations were inversely associated with the prevalence odds of being obese vs. normal weight in children (adjusted Prevalence Odds Ratio, aPOR: 0.82, 95% Confidence Interval, 95% CI: 0.70, 0.95) and adults (aPOR: 0.83, 95% CI: 0.72, 0.96). DBUP was also significantly associated with lower BMI z-scores (β:-0.08, 95% CI:-0.17, 0.01) and WC (β:-0.71, 95% CI: -1.49, 0.07) in children. BCEP concentrations were associated with increased prevalence odds of being overweight vs. normal weight (aPOR: 1.15, 95% CI: 1.01, 1.32) among children; similar, albeit not statistically significant, relationships were observed with other child adiposity outcomes. Among adults, detectable BCPP concentrations were associated with increased prevalence odds of being obese vs. normal weight (aPOR: 1.70, 95% CI: 1.21, 2.38) and having a high vs. normal WC (aPOR: 1.51, 95% CI: 1.11, 2.07) as well as higher BMI (β: 1.31, 95% CI: 0.30, 2.33). Other OPE metabolites were not consistently associated with adiposity measures among adults. Although associations of BCPP exposure with adiposity outcomes were generally inverse among boys, but not girls, we did not observe consistent evidence of sexually-dimorphic associations for other OPE metabolites.
CONCLUSIONS: Exposure to select OPEs may be differentially associated with body size among children and adults. Given the cross-sectional design of the present study, future prospective studies are needed to confirm these findings.

Keywords

References

  1. Environ Toxicol Pharmacol. 2015 Jul;40(1):310-8 [PMID: 26183808]
  2. Environ Pollut. 2018 Feb;233:986-991 [PMID: 29037495]
  3. Vital Health Stat 1. 2013 Aug;(56):1-37 [PMID: 25078429]
  4. Aquat Toxicol. 2012 Jun 15;114-115:173-81 [PMID: 22446829]
  5. JAMA. 2014 Feb 26;311(8):806-14 [PMID: 24570244]
  6. J Toxicol Environ Health A. 2016;79(13-15):515-25 [PMID: 27484134]
  7. JAMA. 2018 Apr 24;319(16):1723-1725 [PMID: 29570750]
  8. Environ Int. 2017 Apr;101:158-164 [PMID: 28162782]
  9. Environ Sci Technol. 2018 Feb 20;52(4):2331-2338 [PMID: 29376341]
  10. Int J Epidemiol. 2009 Dec;38(6):1674-80 [PMID: 19667054]
  11. Drug Metab Dispos. 1991 Mar-Apr;19(2):443-7 [PMID: 1676651]
  12. J Agric Food Chem. 2018 Dec 26;66(51):13525-13532 [PMID: 30525574]
  13. Environ Res. 2018 Jul;164:262-270 [PMID: 29525639]
  14. Bull Environ Contam Toxicol. 1989 Aug;43(2):225-30 [PMID: 2775890]
  15. Environ Int. 2015 Jan;74:1-8 [PMID: 25277340]
  16. J Hazard Mater. 2016 Nov 15;318:686-693 [PMID: 27484948]
  17. Environ Health. 2015 Jun 20;14:54 [PMID: 26092037]
  18. Food Chem Toxicol. 2017 Feb;100:1-7 [PMID: 27965106]
  19. Environ Sci Technol. 2014 Sep 2;48(17):10432-8 [PMID: 25090580]
  20. Aquat Toxicol. 2015 Mar;160:163-71 [PMID: 25637911]
  21. Environ Health Perspect. 2010 Mar;118(3):318-23 [PMID: 20194068]
  22. Reprod Toxicol. 2017 Mar;68:3-33 [PMID: 27760374]
  23. Chemosphere. 2017 Oct;185:918-925 [PMID: 28763939]
  24. Chemosphere. 2014 Dec;116:10-4 [PMID: 24556545]
  25. Aquat Toxicol. 2015 Mar;160:188-96 [PMID: 25646720]
  26. Environ Health Perspect. 2015 Feb;123(2):160-5 [PMID: 25343780]
  27. Drug Metab Dispos. 1981 Sep-Oct;9(5):434-41 [PMID: 6117442]
  28. Environ Int. 2016 Sep;94:627-634 [PMID: 27397928]
  29. Environ Int. 2015 Feb;75:159-65 [PMID: 25461425]
  30. Int J Hyg Environ Health. 2018 May;221(4):652-660 [PMID: 29580847]
  31. Toxicology. 2013 Dec 6;314(1):76-83 [PMID: 24051214]
  32. Toxicol Appl Pharmacol. 2011 Nov 1;256(3):281-9 [PMID: 21255595]
  33. Vital Health Stat 2. 2013 Sep;(161):1-24 [PMID: 25090154]
  34. Environ Sci Technol. 2015 Aug 18;49(16):10057-64 [PMID: 26172262]
  35. Anal Bioanal Chem. 2017 Feb;409(5):1323-1332 [PMID: 27838756]
  36. Environ Int. 2019 Jan;122:104-116 [PMID: 30522823]
  37. Reprod Toxicol. 2017 Mar;68:119-129 [PMID: 27421578]
  38. Environ Health Perspect. 2005 Feb;113(2):192-200 [PMID: 15687057]
  39. Arch Toxicol. 2018 Sep;92(9):2749-2778 [PMID: 30097699]
  40. Environ Int. 2017 Jan;98:96-101 [PMID: 27745946]
  41. Environ Pollut. 2017 Jun;225:559-568 [PMID: 28318792]
  42. Environ Int. 2018 Apr;113:55-65 [PMID: 29421408]
  43. Int J Obes (Lond). 2006 Nov;30(11):1585-94 [PMID: 16801930]
  44. J Biochem Mol Toxicol. 2013 Feb;27(2):124-36 [PMID: 23139171]
  45. Environ Int. 2014 Feb;63:169-72 [PMID: 24316320]
  46. Endocrinology. 2006 Jun;147(6 Suppl):S50-5 [PMID: 16690801]
  47. Environ Sci Technol. 2017 Apr 4;51(7):4061-4068 [PMID: 28282128]
  48. Environ Int. 2016 Sep;94:362-368 [PMID: 27395335]
  49. Toxicol In Vitro. 2016 Jun;33:153-62 [PMID: 26979758]
  50. Toxicol Appl Pharmacol. 1981 Mar 15;57(3):401-13 [PMID: 7222047]
  51. Environ Toxicol. 2016 Oct;31(10):1276-86 [PMID: 25808963]
  52. Environ Sci Technol. 2018 Nov 6;52(21):12765-12773 [PMID: 30303374]
  53. Chemosphere. 2014 Dec;116:112-7 [PMID: 24703012]
  54. Environ Health. 2017 Apr 11;16(1):40 [PMID: 28399857]
  55. Environ Sci Technol. 2017 Oct 3;51(19):10991-10999 [PMID: 28866882]
  56. Environ Health Perspect. 2017 Jun 23;125(6):067013 [PMID: 28665274]
  57. Environ Int. 2018 Jan;110:32-41 [PMID: 29102155]
  58. Environ Sci Technol. 2017 Feb 21;51(4):2427-2437 [PMID: 28094923]
  59. Toxicol Lett. 2014 Jul 15;228(2):93-102 [PMID: 24786373]
  60. Toxicol Sci. 2013 Jul;134(1):92-102 [PMID: 23629516]
  61. Environ Pollut. 2016 Mar;210:27-33 [PMID: 26701863]
  62. Environ Health Perspect. 2013 May;121(5):580-5 [PMID: 23461877]
  63. J Hazard Mater. 2011 Sep 15;192(3):1250-9 [PMID: 21783321]
  64. Environ Int. 2013 May;55:56-61 [PMID: 23523854]
  65. Pediatrics. 2001 Feb;107(2):423-6 [PMID: 11158483]
  66. J Expo Sci Environ Epidemiol. 2019 Jan;29(1):33-48 [PMID: 29950671]
  67. Regul Toxicol Pharmacol. 2011 Apr;59(3):454-60 [PMID: 21295097]
  68. Environ Health Perspect. 2014 Nov;122(11):1225-32 [PMID: 25062436]
  69. Environ Sci Technol. 2009 Oct 1;43(19):7490-5 [PMID: 19848166]
  70. Clin Pharmacokinet. 2012 Jun 1;51(6):365-96 [PMID: 22515555]
  71. Environ Health. 2010 Nov 30;9:76 [PMID: 21118559]
  72. Mol Cell Endocrinol. 2009 May 25;304(1-2):90-6 [PMID: 19433253]
  73. Toxicol Sci. 2016 Apr;150(2):499-509 [PMID: 26794138]

Grants

  1. K01 HL138124/NHLBI NIH HHS
  2. P30 DK072488/NIDDK NIH HHS

MeSH Term

Adiposity
Adult
Biomarkers
Body Mass Index
Child
Cross-Sectional Studies
Female
Flame Retardants
Humans
Male
Nutrition Surveys
Obesity
Organophosphates
Overweight
Prospective Studies
United States
Waist Circumference

Chemicals

Biomarkers
Flame Retardants
Organophosphates

Word Cloud

Created with Highcharts 10.0.01095%amongchildrenCI:associationsadiposityadultsassociatedOPEphosphateaPOR:metabolitesconcentrationsvsnormalOPEsstudiesmeasuresbisDBUPBCPPBMIWCprevalenceoddsweight2Organophosphateesterscross-sectionalUS2013-2014BCEPbodymassindexalsoobese70β:-00107increasedoutcomesBACKGROUND:syntheticchemicalsfoundmanyconsumerproductsincludingfurnitureelectronicsprocessedfoodsbuildingmaterialsEmergingvitrovivosuggestmetabolismdisruptingcompoundshoweverepidemiologicinvestigatingmarkerssparseOBJECTIVE:examinedbiomarkersparticipatingNationalHealthNutritionExaminationSurveyNHANES:METHODS:Concentrationsfivequantifiedurine:diphenylDPHP3-dichloro-2-propylBDCPP2-chloroethyldibutyl1-chloro-2-propylconductedcovariate-adjustedlogisticlinearregressionsexaminelog-transformeddichotomizedmetaboliteobesitywaistcircumferenceseparately7846-19 years1672≥20 yearsassessedheterogeneitysexRESULTS:inverselyadjustedPrevalenceOddsRatio82ConfidenceInterval95837296significantlylowerz-scores08CI:-01771-149overweight1532similaralbeitstatisticallysignificantrelationshipsobservedchildAmongdetectable2138high5111wellhigherβ:313033consistentlyAlthoughexposuregenerallyinverseboysgirlsobserveconsistentevidencesexually-dimorphicCONCLUSIONS:ExposureselectmaydifferentiallysizeGivendesignpresentstudyfutureprospectiveneededconfirmfindingsAssociationsurinaryorganophosphateesteradults:NHANESAdiposityAdultsBodyChildrenFlameretardants

Similar Articles

Cited By