Antibacterial Activity and Mode of Action of a Sulfonamide-Based Class of Oxaborole Leucyl-tRNA-Synthetase Inhibitors.

Yuanyuan Si, Sneha Basak, Yong Li, Jonathan Merino, James N Iuliano, Stephen G Walker, Peter J Tonge
Author Information

Abstract

Benzoxaboroles are a class of boron-containing compounds with a broad range of biological activities. A subset of benzoxaboroles have antimicrobial activity due primarily to their ability to inhibit leucyl-tRNA synthetase (LeuRS) via the oxaborole tRNA-trapping mechanism, which involves the formation of a stable tRNA-benzoxaborole adduct in which the boron atom interacts with the 2'- and 3'-oxygen atoms of the terminal 3' tRNA adenosine. We sought to identify other antibacterial targets for this promising class of compounds by means of mode-of-action studies, and we selected a nitrophenyl sulfonamide based oxaborole () as a probe molecule because it had potent antibacterial activity (MIC of 0.4 μg/mL against methicillin-resistant ) but did not inhibit LeuRS (IC > 100 μM). Analogues of were synthesized to explore the importance of the sulfonamide linker and the impact of altering the functionalization of the phenyl ring. These structure-activity-relationship studies revealed that the nitro substituent was essential for activity. To identify the target for , we raised resistant strains of , and whole-genome sequencing revealed mutations in , suggesting that the target for this compound was indeed LeuRS, despite the lack of enzyme inhibition. Subsequent analysis of metabolism demonstrated that bacterial nitroreductases readily converted this compound into the amino analogue, which inhibited LeuRS with an IC of 3.0 ± 1.2 μM, demonstrating that is thus a prodrug.

Keywords

References

  1. Antimicrob Agents Chemother. 2016 Jul 22;60(8):4886-95 [PMID: 27270277]
  2. J Lab Physicians. 2013 Jan;5(1):5-10 [PMID: 24014960]
  3. Antimicrob Agents Chemother. 2016 Sep 23;60(10):6271-80 [PMID: 27503647]
  4. Science. 2007 Jun 22;316(5832):1759-61 [PMID: 17588934]
  5. Molecules. 2018 Jan 24;23(2): [PMID: 29364838]
  6. Proc Natl Acad Sci U S A. 2003 Nov 25;100(24):13881-6 [PMID: 14623976]
  7. Recent Pat Antiinfect Drug Discov. 2012 Dec 1;7(3):182-8 [PMID: 23016758]
  8. FEBS Lett. 2011 Oct 3;585(19):2986-91 [PMID: 21856301]
  9. Antimicrob Agents Chemother. 2015 Jan;59(1):289-98 [PMID: 25348524]
  10. Clin Infect Dis. 2004 Mar 15;38(6):864-70 [PMID: 14999632]
  11. Chem Rev. 2005 Feb;105(2):395-424 [PMID: 15700950]
  12. J Pharmacol Exp Ther. 2013 Dec;347(3):615-25 [PMID: 24049062]
  13. Recent Pat Antiinfect Drug Discov. 2012 Dec 1;7(3):175-81 [PMID: 23061790]
  14. Biomed Res Int. 2016;2016:2475067 [PMID: 27274985]
  15. Bioorg Med Chem Lett. 2011 Apr 15;21(8):2533-6 [PMID: 21392987]
  16. Diagn Microbiol Infect Dis. 2007 Nov;59(3):347-9 [PMID: 17662552]
  17. Nat Struct Mol Biol. 2012 Jun 10;19(7):677-84 [PMID: 22683997]
  18. Chem Rev. 2015 Jun 10;115(11):5224-47 [PMID: 26017806]
  19. J Org Chem. 2008 Sep 5;73(17):6471-9 [PMID: 18549270]
  20. Antimicrob Agents Chemother. 2016 Sep 23;60(10):5817-27 [PMID: 27431220]
  21. Trends Parasitol. 2014 Jun;30(6):289-98 [PMID: 24776300]
  22. Eur J Clin Microbiol Infect Dis. 2016 Nov;35(11):1857-1864 [PMID: 27506217]
  23. ACS Chem Biol. 2015 Oct 16;10(10):2277-85 [PMID: 26172575]
  24. J Am Chem Soc. 2006 Apr 5;128(13):4226-7 [PMID: 16568987]
  25. J Antimicrob Chemother. 2008 Sep;62(3):495-503 [PMID: 18544599]
  26. J Pharmacol Exp Ther. 2016 Sep;358(3):413-22 [PMID: 27353073]
  27. Science. 1996 Dec 20;274(5295):2107-10 [PMID: 8953047]
  28. Proc Natl Acad Sci U S A. 2006 Jan 10;103(2):431-6 [PMID: 16387854]
  29. J Bacteriol. 2009 May;191(10):3403-6 [PMID: 19286809]
  30. Antimicrob Agents Chemother. 2013 Jun;57(6):2849-57 [PMID: 23507283]
  31. J Glob Antimicrob Resist. 2013 Jun;1(2):63-69 [PMID: 27873580]
  32. Antimicrob Agents Chemother. 2013 Mar;57(3):1394-403 [PMID: 23295920]
  33. Commun Integr Biol. 2009 May;2(3):215-8 [PMID: 19641733]
  34. Sci Rep. 2013;3:2475 [PMID: 23959225]
  35. J Antibiot (Tokyo). 2011 Apr;64(4):321-5 [PMID: 21326251]
  36. J Bacteriol. 1998 Nov;180(21):5529-39 [PMID: 9791100]

Grants

  1. R01 GM102864/NIGMS NIH HHS
  2. R21 AI119316/NIAID NIH HHS
  3. T32 GM092714/NIGMS NIH HHS

MeSH Term

Animals
Anti-Bacterial Agents
Bacterial Proteins
Boron Compounds
Chlorocebus aethiops
Enzyme Inhibitors
Leucine-tRNA Ligase
Methicillin-Resistant Staphylococcus aureus
Molecular Structure
Nitroreductases
Staphylococcus aureus
Structure-Activity Relationship
Sulfonamides
Vero Cells
Whole Genome Sequencing

Chemicals

Anti-Bacterial Agents
Bacterial Proteins
Boron Compounds
Enzyme Inhibitors
Sulfonamides
Nitroreductases
Leucine-tRNA Ligase

Word Cloud

Created with Highcharts 10.0.0LeuRSactivityoxaboroleclasscompoundsinhibitidentifyantibacterialstudiessulfonamide0ICμMrevealednitrotargetcompoundprodrugBenzoxaborolesboron-containingbroadrangebiologicalactivitiessubsetbenzoxaborolesantimicrobialdueprimarilyabilityleucyl-tRNAsynthetaseviatRNA-trappingmechanisminvolvesformationstabletRNA-benzoxaboroleadductboronatominteracts2'-3'-oxygenatomsterminal3'tRNAadenosinesoughttargetspromisingmeansmode-of-actionselectednitrophenylbasedprobemoleculepotentMIC4μg/mLmethicillin-resistant>100Analoguessynthesizedexploreimportancelinkerimpactalteringfunctionalizationphenylringstructure-activity-relationshipsubstituentessentialraisedresistantstrainswhole-genomesequencingmutationssuggestingindeeddespitelackenzymeinhibitionSubsequentanalysismetabolismdemonstratedbacterialnitroreductasesreadilyconvertedaminoanalogueinhibited3±12demonstratingthusAntibacterialActivityModeActionSulfonamide-BasedClassOxaboroleLeucyl-tRNA-SynthetaseInhibitorsnitroreductaseresistance

Similar Articles

Cited By