Two-dimensional ultrasound-computed tomography image registration for monitoring percutaneous hepatic intervention.

Robert M Pohlman, Michael R Turney, Po-Hung Wu, Christopher L Brace, Timothy J Ziemlewicz, Tomy Varghese
Author Information
  1. Robert M Pohlman: Department of Medical Physics, University of Wisconsin School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, 53706, USA.
  2. Michael R Turney: Department of Medical Physics, University of Wisconsin School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, 53706, USA.
  3. Po-Hung Wu: Department of Radiology, University of Wisconsin School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, 53706, USA.
  4. Christopher L Brace: Department of Radiology, University of Wisconsin School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, 53706, USA.
  5. Timothy J Ziemlewicz: Department of Radiology, University of Wisconsin School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, 53706, USA.
  6. Tomy Varghese: Department of Medical Physics, University of Wisconsin School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, 53706, USA.

Abstract

PURPOSE: Deformable registration of ultrasound (US) and contrast enhanced computed tomography (CECT) images are essential for quantitative comparison of ablation boundaries and dimensions determined using these modalities. This comparison is essential as stiffness-based imaging using US has become popular and offers a nonionizing and cost-effective imaging modality for monitoring minimally invasive microwave ablation procedures. A sensible manual registration method is presented that performs the required CT-US image registration.
METHODS: The two-dimensional (2D) virtual CT image plane that corresponds to the clinical US B-mode was obtained by "virtually slicing" the 3D CT volume along the plane containing non-anatomical landmarks, namely points along the microwave ablation antenna. The initial slice plane was generated using the vector acquired by rotating the normal vector of the transverse (i.e., xz) plane along the angle subtended by the antenna. This plane was then further rotated along the ablation antenna and shifted along with the direction of normal vector to obtain similar anatomical structures, such as the liver surface and vasculature that is visualized on both the CT virtual slice and US B-mode images on 20 patients. Finally, an affine transformation was estimated using anatomic and non-anatomic landmarks to account for distortion between the colocated CT virtual slice and US B-mode image resulting in a final registered CT virtual slice. Registration accuracy was measured by estimating the Euclidean distance between corresponding registered points on CT and US B-mode images.
RESULTS: Mean and SD of the affine transformed registration error was 1.85 ± 2.14 (mm), computed from 20 coregistered data sets.
CONCLUSIONS: Our results demonstrate the ability to obtain 2D virtual CT slices that are registered to clinical US B-mode images. The use of both anatomical and non-anatomical landmarks result in accurate registration useful for validating ablative margins and comparison to electrode displacement elastography based images.

Keywords

References

  1. Ultrasound Med Biol. 2017 Sep;43(9):1953-1962 [PMID: 28595851]
  2. Curr Probl Diagn Radiol. 2009 May-Jun;38(3):135-43 [PMID: 19298912]
  3. Ultrasound Med Biol. 2016 Jul;42(7):1627-36 [PMID: 27085384]
  4. J Vasc Interv Radiol. 2011 Apr;22(4):515-24 [PMID: 21354816]
  5. Phys Med Biol. 2011 Jan 7;56(1):117-37 [PMID: 21119227]
  6. Springerplus. 2016 Feb 29;5:219 [PMID: 27026913]
  7. J Vasc Interv Radiol. 2007 Sep;18(9):1141-50 [PMID: 17804777]
  8. Med Phys. 2015 Jan;42(1):335-47 [PMID: 25563273]
  9. J Acoust Soc Am. 2010 Oct;128(4):1582-5 [PMID: 20968329]
  10. Med Image Anal. 2013 Dec;17(8):1073-94 [PMID: 23906631]
  11. Radiology. 2016 Jan;278(1):95-103 [PMID: 26133361]
  12. Ultrasound Med Biol. 2016 Dec;42(12):2893-2902 [PMID: 27592561]
  13. Clin Hemorheol Microcirc. 2012;52(2-4):205-16 [PMID: 22960300]
  14. Med Phys. 2017 Jun;44(6):2132-2140 [PMID: 28391605]
  15. Surg Clin North Am. 2016 Apr;96(2):315-39 [PMID: 27017867]
  16. Med Image Anal. 2017 Jul;39:101-123 [PMID: 28482198]
  17. Med Image Anal. 2008 Oct;12(5):577-85 [PMID: 18650121]
  18. IEEE Trans Med Imaging. 1998 Oct;17(5):694-702 [PMID: 9874293]
  19. Liver Transpl. 2004 Feb;10(2 Suppl 1):S115-20 [PMID: 14762851]
  20. Ann Surg. 1995 Mar;221(3):291-8 [PMID: 7717783]
  21. IEEE Trans Ultrason Ferroelectr Freq Control. 2018 Dec;65(12):2381-2389 [PMID: 30296219]
  22. Semin Intervent Radiol. 2013 Mar;30(1):56-66 [PMID: 24436518]
  23. IEEE Trans Med Imaging. 2015 Feb;34(2):366-80 [PMID: 25248177]
  24. J Vasc Interv Radiol. 2016 May;27(5):631-8 [PMID: 27017124]
  25. Ultrasound Med Biol. 2019 Jan;45(1):218-232 [PMID: 30318122]
  26. Phys Med Biol. 2012 Jan 7;57(1):69-91 [PMID: 22126813]
  27. PLoS One. 2012;7(3):e33956 [PMID: 22448281]
  28. AJR Am J Roentgenol. 2008 May;190(5):1324-30 [PMID: 18430851]
  29. AJR Am J Roentgenol. 2013 Mar;200(3):W249-55 [PMID: 23436869]
  30. Phys Med Biol. 2010 Apr 21;55(8):2281-306 [PMID: 20354279]
  31. AJR Am J Roentgenol. 2000 Sep;175(3):705-11 [PMID: 10954454]
  32. Comput Aided Surg. 2015;20(1):61-72 [PMID: 26359529]
  33. Med Phys. 2010 Mar;37(3):1075-82 [PMID: 20384243]
  34. Acta Neurochir (Wien). 2004 Mar;146(3):271-6; discussion 276-7 [PMID: 15015050]
  35. Med Phys. 2008 Jun;35(6):2432-42 [PMID: 18649476]
  36. Magn Reson Imaging. 2002 Apr;20(3):295-9 [PMID: 12117612]
  37. IEEE Trans Med Imaging. 2002 Dec;21(12):1445-9 [PMID: 12588028]
  38. Med Image Anal. 2019 Apr;53:132-141 [PMID: 30772666]
  39. Ultrasonography. 2014 Oct;33(4):227-39 [PMID: 25036756]
  40. Int J Hyperthermia. 2015;31(8):875-82 [PMID: 26446910]
  41. Med Phys. 2004 Jun;31(6):1322-32 [PMID: 15259635]
  42. Med Image Anal. 2015 Feb;20(1):1-18 [PMID: 25534282]
  43. Int J Comput Assist Radiol Surg. 2009 Jan;4(1):79-88 [PMID: 20033605]
  44. Cardiovasc Intervent Radiol. 2011 Apr;34(2):338-44 [PMID: 20845039]
  45. IEEE Trans Med Imaging. 2009 Aug;28(8):1325-34 [PMID: 19258195]
  46. J Vasc Interv Radiol. 2015 Jan;26(1):62-8 [PMID: 25446425]
  47. Radiology. 1997 Jan;202(1):195-203 [PMID: 8988211]
  48. Tech Vasc Interv Radiol. 2007 Mar;10(1):38-46 [PMID: 17980317]
  49. Int J Comput Assist Radiol Surg. 2015 Jun;10(6):791-800 [PMID: 25900342]
  50. IEEE Trans Med Imaging. 2019 Feb 04;: [PMID: 30716034]
  51. J Hepatol. 2017 Feb;66(2):347-354 [PMID: 27650284]
  52. IEEE Trans Ultrason Ferroelectr Freq Control. 2007 Feb;54(2):281-9 [PMID: 17328325]

Grants

  1. R01 CA112192/NCI NIH HHS
  2. T32 CA009206/NCI NIH HHS
  3. 2R01 CA112192/NIH HHS

MeSH Term

Ablation Techniques
Carcinoma, Hepatocellular
Humans
Image Processing, Computer-Assisted
Liver Neoplasms
Surgery, Computer-Assisted
Tomography, X-Ray Computed
Ultrasonography

Word Cloud

Created with Highcharts 10.0.0registrationUSCTimagesablationvirtualplaneB-modealongusingimageslicecomputedtomographycomparisonmonitoringmicrowavelandmarksantennavectorregisteredultrasoundessentialimaging2Dclinicalnon-anatomicalpointsnormalobtainanatomical20affinePURPOSE:DeformablecontrastenhancedCECTquantitativeboundariesdimensionsdeterminedmodalitiesstiffness-basedbecomepopularoffersnonionizingcost-effectivemodalityminimallyinvasiveproceduressensiblemanualmethodpresentedperformsrequiredCT-USMETHODS:two-dimensionalcorrespondsobtained"virtuallyslicing"3DvolumecontainingnamelyinitialgeneratedacquiredrotatingtransverseiexzanglesubtendedrotatedshifteddirectionsimilarstructuresliversurfacevasculaturevisualizedpatientsFinallytransformationestimatedanatomicnon-anatomicaccountdistortioncolocatedresultingfinalRegistrationaccuracymeasuredestimatingEuclideandistancecorrespondingRESULTS:MeanSDtransformederror185 ± 214mmcoregistereddatasetsCONCLUSIONS:resultsdemonstrateabilityslicesuseresultaccurateusefulvalidatingablativemarginselectrodedisplacementelastographybasedTwo-dimensionalultrasound-computedpercutaneoushepaticintervention

Similar Articles

Cited By