Gut bacteria of the cowpea beetle mediate its resistance to dichlorvos and susceptibility to Lippia adoensis essential oil.

Mazarin Akami, Nicolas Yanou Njintang, Olajire A Gbaye, Awawing A Andongma, Muhammad Adnan Rashid, Chang-Ying Niu, Elias Nchiwan Nukenine
Author Information
  1. Mazarin Akami: College of Plant Science & Technology, Huazhong Agricultural University, Wuhan, 430070, China. makami1987@gmail.com. ORCID
  2. Nicolas Yanou Njintang: Department of Biological Sciences, Faculty of Science, University of Ngaoundere, P.O Box 454, Ngaoundere, Cameroon. ORCID
  3. Olajire A Gbaye: Department of Biology, Federal University of Technology, P.M.B. 704, Akure, Nigeria.
  4. Awawing A Andongma: College of Plant Science & Technology, Huazhong Agricultural University, Wuhan, 430070, China.
  5. Muhammad Adnan Rashid: College of Plant Science & Technology, Huazhong Agricultural University, Wuhan, 430070, China.
  6. Chang-Ying Niu: College of Plant Science & Technology, Huazhong Agricultural University, Wuhan, 430070, China. niuchangying88@163.com.
  7. Elias Nchiwan Nukenine: Department of Biological Sciences, Faculty of Science, University of Ngaoundere, P.O Box 454, Ngaoundere, Cameroon.

Abstract

Bacteria inhabiting the gut of insects provide many benefits to their hosts, such as aiding in food digestion, reproduction, and immunity, tissue homeostasis, adaptation to environment and resistance to pathogen and pesticides. The cowpea beetle, Callosobruchus maculatus, is a serious cosmopolitan pest of pulses. This beetle has lent itself as a guinea pig for several ecological studies. It harbors a consortium of bacterial communities in its gut, but the evidence for their role in its physiology is fragmentary. In this work, we hypothesized that gut microbiota mediates C. maculatus resistance to dichlorvos (DDVP or O,O-dimethyl O-2,2-dichlorovinylphosphate) and represent the target of Lippia adoensis (Gambian Tea Bush) essential oil (EO). Symbiotic and aposymbiotic beetles were exposed to artificial cowpea seeds earlier treated with DDVP or EO. Adult mortality and changes in gut bacterial community composition and abundance were examined at F and F generations. The susceptibility of experimental beetles to DDVP was significantly affected by their symbiotic status. The adult mortality decreased across generations in DDVP treatments, and remained significantly higher in aposymbiotic groups. In EO treatments, the mortality was consistent irrespective of symbiotic status and experimental generations. When compared to DDVP and the Control, EO treatments had significantly lower bacterial richness and diversity, as well as lower abundance of Proteobacteria, Firmicutes, and Bacteroidetes. These results support our hypothesis and describe the responses of gut microbial communities to pesticide treatments. This could be of interest for developing new management strategies of this pest.

References

  1. NPJ Biofilms Microbiomes. 2016 Apr 20;2:16004 [PMID: 28721243]
  2. Oecologia. 2015 Sep;179(1):1-14 [PMID: 25936531]
  3. PLoS One. 2015 May 26;10(5):e0127774 [PMID: 26010088]
  4. PLoS One. 2012;7(4):e35181 [PMID: 22558125]
  5. Mol Ecol. 2017 Aug;26(15):4099-4110 [PMID: 28543918]
  6. BMC Plant Biol. 2017 Mar 2;17(1):30 [PMID: 28249605]
  7. Nucleic Acids Res. 2014 Jan;42(Database issue):D633-42 [PMID: 24288368]
  8. Front Microbiol. 2014 Aug 29;5:457 [PMID: 25221549]
  9. Nat Methods. 2010 May;7(5):335-6 [PMID: 20383131]
  10. Microbiome. 2017 Feb 1;5(1):13 [PMID: 28143582]
  11. R Soc Open Sci. 2015 Jul 29;2(7):150170 [PMID: 26587275]
  12. Mol Ecol. 2014 Mar;23(6):1473-1496 [PMID: 23952067]
  13. PLoS One. 2012;7(7):e40467 [PMID: 22808168]
  14. Sci Rep. 2015 Mar 30;5:9470 [PMID: 25822599]
  15. PLoS One. 2016 Jul 21;11(7):e0158565 [PMID: 27442123]
  16. Appl Environ Microbiol. 2007 Jul;73(13):4308-16 [PMID: 17483286]
  17. PLoS One. 2017 Mar 30;12(3):e0174754 [PMID: 28358907]
  18. Sci Rep. 2017 Jul 19;7(1):5791 [PMID: 28725026]
  19. Appl Environ Microbiol. 2009 Dec;75(23):7537-41 [PMID: 19801464]
  20. Plant Physiol. 2013 Jul;162(3):1324-36 [PMID: 23729780]
  21. Proc Natl Acad Sci U S A. 2013 Jul 16;110(29):11917-22 [PMID: 23798396]
  22. Annu Rev Entomol. 2012;57:405-24 [PMID: 21942843]
  23. Proc Natl Acad Sci U S A. 2005 Sep 6;102(36):12795-800 [PMID: 16120675]
  24. Appl Environ Microbiol. 2007 Aug;73(16):5261-7 [PMID: 17586664]
  25. Appl Environ Microbiol. 2004 Jan;70(1):293-300 [PMID: 14711655]
  26. Trends Microbiol. 2009 Aug;17(8):348-54 [PMID: 19660955]
  27. J Insect Sci. 2013;13:152 [PMID: 24773362]
  28. Insects. 2014 Dec 31;6(1):77-84 [PMID: 26463066]
  29. BMC Genomics. 2016 Dec 8;17(1):1005 [PMID: 27931186]
  30. PLoS One. 2012;7(8):e41877 [PMID: 22927917]
  31. PLoS One. 2019 Jan 16;14(1):e0210109 [PMID: 30650116]
  32. J Evol Biol. 2014 Dec;27(12):2695-705 [PMID: 25403559]
  33. Environ Microbiol. 2011 Jul;13(7):1889-900 [PMID: 21631690]
  34. Mem Inst Oswaldo Cruz. 2012 Jun;107(4):437-49 [PMID: 22666852]
  35. J Microbiol Methods. 2007 May;69(2):330-9 [PMID: 17391789]
  36. Pest Manag Sci. 2011 Mar;67(3):370-6 [PMID: 21308963]
  37. Insect Sci. 2015 Apr;22(2):165-77 [PMID: 24347564]
  38. PLoS One. 2011 Feb 16;6(2):e17000 [PMID: 21359220]
  39. Can J Microbiol. 2006 Nov;52(11):1085-92 [PMID: 17215900]
  40. BMC Genomics. 2013 Jun 10;14:390 [PMID: 23758874]
  41. Front Genet. 2014 Jun 20;5:168 [PMID: 24999350]
  42. Sci Rep. 2017 Jan 03;7:39690 [PMID: 28045052]
  43. Proc Natl Acad Sci U S A. 2012 May 29;109(22):8364-5 [PMID: 22615369]
  44. Appl Microbiol Biotechnol. 2017 Dec;101(23-24):8543-8556 [PMID: 29027575]
  45. BMC Microbiol. 2017 Dec 1;17(1):223 [PMID: 29191163]
  46. Food Chem Toxicol. 2008 Feb;46(2):446-75 [PMID: 17996351]
  47. Ecol Lett. 2014 Oct;17(10):1238-46 [PMID: 25040855]
  48. Proc Natl Acad Sci U S A. 2012 May 29;109(22):8618-22 [PMID: 22529384]
  49. Nat Commun. 2015 Jul 14;6:7618 [PMID: 26173063]
  50. R Soc Open Sci. 2017 Aug 23;4(8):170692 [PMID: 28879012]
  51. Proc Natl Acad Sci U S A. 2010 Nov 16;107(46):20051-6 [PMID: 21041648]

MeSH Term

Animals
Bacteroidetes
Coleoptera
Dichlorvos
Firmicutes
Gastrointestinal Microbiome
Gastrointestinal Tract
Insecticide Resistance
Insecticides
Lippia
Longevity
Oils, Volatile
Proteobacteria
Seeds
Symbiosis
Vigna

Chemicals

Insecticides
Oils, Volatile
Dichlorvos

Word Cloud

Created with Highcharts 10.0.0gutDDVPEOtreatmentsresistancecowpeabeetlebacterialmortalitygenerationssignificantlymaculatuspestcommunitiesdichlorvosLippiaadoensisessentialoilaposymbioticbeetlesabundanceFsusceptibilityexperimentalsymbioticstatuslowerBacteriainhabitinginsectsprovidemanybenefitshostsaidingfooddigestionreproductionimmunitytissuehomeostasisadaptationenvironmentpathogenpesticidesCallosobruchusseriouscosmopolitanpulseslentguineapigseveralecologicalstudiesharborsconsortiumevidencerolephysiologyfragmentaryworkhypothesizedmicrobiotamediatesCOO-dimethylO-22-dichlorovinylphosphaterepresenttargetGambianTeaBushSymbioticexposedartificialseedsearliertreatedAdultchangescommunitycompositionexaminedaffectedadultdecreasedacrossremainedhighergroupsconsistentirrespectivecomparedControlrichnessdiversitywellProteobacteriaFirmicutesBacteroidetesresultssupporthypothesisdescriberesponsesmicrobialpesticideinterestdevelopingnewmanagementstrategiesGutbacteriamediate

Similar Articles

Cited By (21)