Cannabinoid CB1 and CB2 Receptor-Mediated Arrestin Translocation: Species, Subtype, and Agonist-Dependence.

Mikkel Søes Ibsen, David B Finlay, Monica Patel, Jonathan A Javitch, Michelle Glass, Natasha Lillia Grimsey
Author Information
  1. Mikkel Søes Ibsen: Department of Pharmacology and Clinical Pharmacology, School of Medical Sciences, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand.
  2. David B Finlay: Department of Pharmacology and Toxicology, University of Otago, Dunedin, New Zealand.
  3. Monica Patel: Department of Pharmacology and Clinical Pharmacology, School of Medical Sciences, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand.
  4. Jonathan A Javitch: Department of Psychiatry and Pharmacology, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, United States.
  5. Michelle Glass: Department of Pharmacology and Toxicology, University of Otago, Dunedin, New Zealand.
  6. Natasha Lillia Grimsey: Department of Pharmacology and Clinical Pharmacology, School of Medical Sciences, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand.

Abstract

Arrestin translocation and signaling have come to the fore of the G protein-coupled receptor molecular pharmacology field. Some receptor-arrestin interactions are relatively well understood and considered responsible for specific therapeutic or adverse outcomes. Coupling of arrestins with cannabinoid receptors 1 (CB) and 2 (CB) has been reported, though the majority of studies have not systematically characterized the differential ligand dependence of this activity. In addition, many prior studies have utilized bovine (rather than human) arrestins, and the most widely applied assays require reporter-tagged receptors, which prevent meaningful comparison between receptor types. We have employed a bioluminescence resonance energy transfer (BRET) method that does not require the use of tagged receptors and thereby allows comparisons of arrestin translocation between receptor types, as well as with cells lacking the receptor of interest - an important control. The ability of a selection of CB and CB agonists to stimulate cell surface translocation of human and bovine β-arrestin-1 and -2 was assessed. We find that some CB ligands induce moderate β-arrestin-2 translocation in comparison with vasopressin V receptor (a robust arrestin recruiter); however, CB coupling with β-arrestin-1 and CB with either arrestin elicited low relative efficacies. A range of efficacies between ligands was evident for both receptors and arrestins. Endocannabinoid 2-arachidonoylglycerol stood out as a high efficacy ligand for translocation of β-arrestin-2 via CB. Δ-tetrahydrocannabinol was generally unable to elicit translocation of either arrestin subtype via CB or CB; however, control experiments revealed translocation in cells not expressing CB/CB, which may assist in explaining some discrepancy with the literature. Overexpression of GRK2 had modest influence on CB/CB-induced arrestin translocation. Results with bovine and human arrestins were largely analogous, but a few instances of inconsistent rank order potencies/efficacies between bovine and human arrestins raise the possibility that subtle differences in receptor conformation stabilized by these ligands manifest in disparate affinities for the two arrestin species, with important potential consequences for interpretation in ligand bias studies. As well as contributing important information regarding CB/CB ligand-dependent arrestin coupling, our study raises a number of points for consideration in the design and interpretation of arrestin recruitment assays.

Keywords

References

  1. J Neurosci. 1999 May 15;19(10):3773-80 [PMID: 10234009]
  2. J Biol Chem. 1999 Jul 16;274(29):20397-405 [PMID: 10400664]
  3. J Biol Chem. 1999 Nov 5;274(45):32248-57 [PMID: 10542263]
  4. Mol Pharmacol. 1999 Dec;56(6):1362-9 [PMID: 10570066]
  5. J Pharmacol Exp Ther. 2000 Mar;292(3):886-94 [PMID: 10688601]
  6. J Biol Chem. 2000 May 26;275(21):15621-8 [PMID: 10821843]
  7. Eur J Pharmacol. 2001 Nov 23;431(3):277-86 [PMID: 11730719]
  8. Mol Pharmacol. 2002 Mar;61(3):477-85 [PMID: 11854427]
  9. Neurosignals. 2003 Jan-Feb;12(1):39-44 [PMID: 12624527]
  10. J Biol Chem. 2003 Oct 17;278(42):41541-51 [PMID: 12900404]
  11. Mol Pharmacol. 1992 Nov;42(5):838-45 [PMID: 1331766]
  12. Mol Endocrinol. 2004 May;18(5):1277-86 [PMID: 14976224]
  13. Mol Pharmacol. 2004 Apr;65(4):999-1007 [PMID: 15044630]
  14. Eur J Pharmacol. 2004 Nov 28;505(1-3):1-9 [PMID: 15556131]
  15. J Pharmacol Exp Ther. 2005 Sep;314(3):1195-201 [PMID: 15917400]
  16. J Pharmacol Exp Ther. 2005 Nov;315(2):828-38 [PMID: 16081674]
  17. J Biochem Biophys Methods. 2006 Apr 30;67(1):67-74 [PMID: 16480772]
  18. Annu Rev Physiol. 2007;69:451-82 [PMID: 17037978]
  19. Annu Rev Physiol. 2007;69:483-510 [PMID: 17305471]
  20. Neuropharmacology. 2008 Jan;54(1):36-44 [PMID: 17681354]
  21. FEBS Lett. 2007 Oct 16;581(25):5009-16 [PMID: 17910957]
  22. J Neurochem. 2008 Jul;106(1):70-82 [PMID: 18331587]
  23. Behav Pharmacol. 2008 Jul;19(4):298-307 [PMID: 18622177]
  24. J Biomol Screen. 2009 Jan;14(1):49-58 [PMID: 19171920]
  25. Proc Natl Acad Sci U S A. 2009 Jun 16;106(24):9649-54 [PMID: 19497875]
  26. PLoS One. 2009 Dec 21;4(12):e8383 [PMID: 20027297]
  27. Pharmacol Rev. 2010 Dec;62(4):588-631 [PMID: 21079038]
  28. BMC Genomics. 2011 Jan 07;12:14 [PMID: 21214938]
  29. Biochemistry. 2011 Mar 29;50(12):2223-34 [PMID: 21306178]
  30. Biochim Biophys Acta. 2011 Aug;1813(8):1554-60 [PMID: 21640764]
  31. Sci Signal. 2011 Aug 9;4(185):ra51 [PMID: 21868357]
  32. Mol Pharmacol. 2012 Feb;81(2):250-63 [PMID: 22064678]
  33. Biol Psychiatry. 2012 Apr 15;71(8):714-24 [PMID: 22264443]
  34. Br J Pharmacol. 2013 Feb;168(3):554-75 [PMID: 22994528]
  35. J Pharmacol Exp Ther. 2013 Mar;344(3):708-17 [PMID: 23300227]
  36. Nat Rev Drug Discov. 2013 Mar;12(3):205-16 [PMID: 23411724]
  37. Mol Cell Endocrinol. 2013 Jun 15;372(1-2):116-27 [PMID: 23541635]
  38. Nature. 2013 May 2;497(7447):137-41 [PMID: 23604254]
  39. PLoS One. 2013 Jun 06;8(6):e65885 [PMID: 23762448]
  40. J Recept Signal Transduct Res. 2013 Dec;33(6):367-79 [PMID: 24094141]
  41. Curr Mol Pharmacol. 2014;7(1):67-80 [PMID: 25023974]
  42. J Biol Chem. 2014 Sep 5;289(36):24845-62 [PMID: 25037227]
  43. Nature. 2014 Aug 14;512(7513):218-222 [PMID: 25043026]
  44. Nat Commun. 2014 Aug 01;5:4589 [PMID: 25081814]
  45. Nat Commun. 2014 Sep 03;5:4767 [PMID: 25182477]
  46. J Biol Chem. 2014 Nov 28;289(48):33663-75 [PMID: 25336643]
  47. J Mol Endocrinol. 2015 Feb;54(1):75-89 [PMID: 25510402]
  48. Nature. 2015 Jul 30;523(7562):561-7 [PMID: 26200343]
  49. Curr Protoc Pharmacol. 2015 Sep 01;70:2.14.1-14 [PMID: 26331887]
  50. Pain. 2016 Jan;157(1):264-72 [PMID: 26683109]
  51. Mol Pharmacol. 2016 Mar;89(3):364-75 [PMID: 26700564]
  52. J Biol Chem. 2016 Apr 22;291(17):8969-77 [PMID: 26984408]
  53. Mol Pharmacol. 2016 Jun;89(6):618-29 [PMID: 27009233]
  54. PeerJ. 2016 Mar 21;4:e1835 [PMID: 27018161]
  55. J Pharmacol Exp Ther. 2016 Aug;358(2):342-51 [PMID: 27194477]
  56. Methods Mol Biol. 2016;1412:103-11 [PMID: 27245896]
  57. Cell. 2016 Aug 11;166(4):907-919 [PMID: 27499021]
  58. Nature. 2016 Sep 8;537(7619):185-190 [PMID: 27533032]
  59. Mol Pharmacol. 2017 Feb;91(2):75-86 [PMID: 27895162]
  60. Nat Commun. 2017 Jan 03;8:13958 [PMID: 28045021]
  61. Br J Pharmacol. 2017 Aug;174(15):2545-2562 [PMID: 28516479]
  62. Cell. 2017 Jul 27;170(3):457-469.e13 [PMID: 28753425]
  63. Cannabis Cannabinoid Res. 2017 Mar 01;2(1):48-60 [PMID: 28861504]
  64. Mol Biol Cell. 2017 Nov 15;28(24):3554-3561 [PMID: 28954865]
  65. J Pain Res. 2017 Oct 06;10:2413-2424 [PMID: 29062240]
  66. Mol Psychiatry. 2018 Aug 17;:null [PMID: 30120413]
  67. Biochem Pharmacol. 2018 Nov;157:148-158 [PMID: 30194918]
  68. Mol Pharmacol. 1995 Sep;48(3):443-50 [PMID: 7565624]
  69. J Neurosci. 1997 Jul 15;17(14):5327-33 [PMID: 9204917]

Grants

  1. R01 MH054137/NIMH NIH HHS

Word Cloud

Created with Highcharts 10.0.0CBreceptorarrestintranslocationarrestinscannabinoidreceptorsbovinehumansignalingwellstudiesligandimportantligandsArrestinGprotein-coupled12assaysrequirecomparisontypescellscontrolβ-arrestin-1β-arrestin-2vasopressinhowevercouplingeitherefficaciesviaCB/CBinterpretationbiasCB1CB2comeforemolecularpharmacologyfieldreceptor-arrestininteractionsrelativelyunderstoodconsideredresponsiblespecifictherapeuticadverseoutcomesCouplingreportedthoughmajoritysystematicallycharacterizeddifferentialdependenceactivityadditionmanypriorutilizedratherwidelyappliedreporter-taggedpreventmeaningfulemployedbioluminescenceresonanceenergytransferBRETmethodusetaggedtherebyallowscomparisonslackinginterest-abilityselectionagonistsstimulatecellsurface-2assessedfindinducemoderateVrobustrecruiterelicitedlowrelativerangeevidentEndocannabinoid2-arachidonoylglycerolstoodhighefficacyΔ-tetrahydrocannabinolgenerallyunableelicitsubtypeexperimentsrevealedexpressingmayassistexplainingdiscrepancyliteratureOverexpressionGRK2modestinfluenceCB/CB-inducedResultslargelyanalogousinstancesinconsistentrankorderpotencies/efficaciesraisepossibilitysubtledifferencesconformationstabilizedmanifestdisparateaffinitiestwospeciespotentialconsequencescontributinginformationregardingligand-dependentstudyraisesnumberpointsconsiderationdesignrecruitmentCannabinoidReceptor-MediatedTranslocation:SpeciesSubtypeAgonist-DependenceGPCR

Similar Articles

Cited By