Evaluating a Method to Estimate Mediation Effects With Discrete-Time Survival Outcomes.

Amanda Jane Fairchild, Chao Cai, Heather McDaniel, Dexin Shi, Amanda Gottschall, Katherine E Masyn
Author Information
  1. Amanda Jane Fairchild: Department of Psychology, University of South Carolina, Columbia, SC, United States.
  2. Chao Cai: Department of Psychology, University of South Carolina, Columbia, SC, United States.
  3. Heather McDaniel: Curry School of Education, University of Virginia, Charlottesville, VA, United States.
  4. Dexin Shi: Department of Psychology, University of South Carolina, Columbia, SC, United States.
  5. Amanda Gottschall: Department of Psychology, University of South Carolina, Columbia, SC, United States.
  6. Katherine E Masyn: Department of Population Health Sciences, Georgia State University, Atlanta, GA, United States.

Abstract

The utility of evaluating mediation effects spans across research domains. The model facilitates investigation of underlying mechanisms of event timing and, as such, has the potential to help strengthen etiological research and inform intervention work that incorporates the evaluation of mediating variables. In order for the analyses to be maximally useful however, it is critical to employ methodology appropriate for the data under investigation. The purpose of this paper is to evaluate a regression-based approach to estimating mediation effects with discrete-time survival outcomes. We empirically evaluate the performance of the discrete-time survival mediation model in a statistical simulation study, and demonstrate that results are functionally equivalent to estimates garnered from a potential-outcomes framework. Simulation results indicate that parameter estimates of mediation in the model were statistically accurate and precise across the range of examined conditions. Type 1 error rates were also tolerable in the conditions studied. Adequate power to detect effects in the model, with binary X and continuous M variables, required effect sizes of the mediation paths to be medium or large. Possible extensions of the model are also considered.

Keywords

References

  1. J Int AIDS Soc. 2018 Feb;21 Suppl 1: [PMID: 29485746]
  2. J Exp Soc Psychol. 2016 Sep;66:29-38 [PMID: 27570259]
  3. Am J Clin Nutr. 2017 Jun;105(6):1259-1271 [PMID: 28446497]
  4. Curr Dir Psychol Sci. 2009 Feb 1;18(1):16 [PMID: 20157637]
  5. J Pers Soc Psychol. 1986 Dec;51(6):1173-82 [PMID: 3806354]
  6. Child Dev. 1996 Apr;67(2):344-59 [PMID: 8625717]
  7. Epidemiology. 2011 Jul;22(4):582-5 [PMID: 21642779]
  8. J Res Adolesc. 2016 Dec;26(4):864-879 [PMID: 27990071]
  9. Drug Alcohol Depend. 2015 Sep 1;154:222-8 [PMID: 26166667]
  10. Multivariate Behav Res. 2013 May 1;48(3):340-369 [PMID: 24039298]
  11. J Grad Med Educ. 2012 Sep;4(3):279-82 [PMID: 23997866]
  12. Struct Equ Modeling. 2018;25(1):121-136 [PMID: 29910595]
  13. Drug Alcohol Depend. 2017 Aug 1;177:291-298 [PMID: 28672216]
  14. Psychiatr Serv. 2005 Oct;56(10):1282-7 [PMID: 16215196]
  15. Behav Res Methods. 2008 Aug;40(3):879-91 [PMID: 18697684]
  16. BMC Public Health. 2016 Oct 22;16(1):1113 [PMID: 27770781]
  17. Psychol Sci. 2014 Feb;25(2):334-9 [PMID: 24311476]
  18. Psychol Sci. 2007 Mar;18(3):233-9 [PMID: 17444920]
  19. Int J Biostat. 2011;7(1):Article 33 [PMID: 22049268]
  20. J Health Commun. 2013;18(3):291-305 [PMID: 23311876]
  21. Multivariate Behav Res. 1995 Jan 1;30(1):41 [PMID: 20157641]
  22. J Subst Abuse Treat. 2013 Feb;44(2):193-200 [PMID: 22658290]
  23. BMC Med Res Methodol. 2018 Oct 29;18(1):118 [PMID: 30373524]
  24. Addict Behav. 2012 Mar;37(3):299-305 [PMID: 22136874]
  25. J Pediatr Psychol. 2009 Nov-Dec;34(10):1069-83 [PMID: 19386771]
  26. BMC Med Res Methodol. 2016 Feb 29;16:27 [PMID: 26927506]
  27. Multivariate Behav Res. 2011 May;46(3):425-452 [PMID: 22399826]
  28. Stat Med. 2009 Mar 15;28(6):956-71 [PMID: 19125387]
  29. Annu Rev Psychol. 2007;58:593-614 [PMID: 16968208]
  30. Struct Equ Modeling. 2011 Jan 1;18(3):357-369 [PMID: 22081755]
  31. J Am Stat Assoc. 2016;111(514):846-860 [PMID: 27616801]
  32. J Stat Softw. 2014;59(13):1-21 [PMID: 26917999]
  33. J Occup Health Psychol. 2011 Oct;16(4):501-13 [PMID: 21728433]
  34. Behav Res Methods. 2015 Jun;47(2):424-42 [PMID: 24903690]
  35. Clin Trials. 2007;4(5):499-513 [PMID: 17942466]
  36. Psychol Methods. 2002 Mar;7(1):83-104 [PMID: 11928892]
  37. Eval Health Prof. 2015 Sep;38(3):315-42 [PMID: 24296470]
  38. Front Psychol. 2016 Mar 30;7:423 [PMID: 27065906]
  39. Psychol Methods. 2002 Dec;7(4):422-45 [PMID: 12530702]
  40. Prev Sci. 2014 Feb;15 Suppl 1:S19-32 [PMID: 23539433]
  41. Eval Rev. 2000 Feb;24(1):47-72 [PMID: 10747770]
  42. Epidemiology. 2011 Jul;22(4):575-81 [PMID: 21552129]
  43. Eat Behav. 2014 Dec;15(4):532-9 [PMID: 25113902]

Grants

  1. R01 DA030349/NIDA NIH HHS

Word Cloud

Created with Highcharts 10.0.0mediationmodeleffectsdiscrete-timesurvivalacrossresearchinvestigationeventvariablesevaluateresultsestimatesconditionsalsoutilityevaluatingspansdomainsfacilitatesunderlyingmechanismstimingpotentialhelpstrengthenetiologicalinforminterventionworkincorporatesevaluationmediatingorderanalysesmaximallyusefulhowevercriticalemploymethodologyappropriatedatapurposepaperregression-basedapproachestimatingoutcomesempiricallyperformancestatisticalsimulationstudydemonstratefunctionallyequivalentgarneredpotential-outcomesframeworkSimulationindicateparameterstatisticallyaccuratepreciserangeexaminedType1errorratestolerablestudiedAdequatepowerdetectbinaryXcontinuousMrequiredeffectsizespathsmediumlargePossibleextensionsconsideredEvaluatingMethodEstimateMediationEffectsDiscrete-TimeSurvivalOutcomeshistoryonsetanalysis

Similar Articles

Cited By