Chromatin Evolution-Key Innovations Underpinning Morphological Complexity.

Mohsen Hajheidari, Csaba Koncz, Marcel Bucher
Author Information
  1. Mohsen Hajheidari: Botanical Institute, Cologne Biocenter, Cluster of Excellence on Plant Sciences, University of Cologne, Cologne, Germany.
  2. Csaba Koncz: Department of Plant Developmental Biology, Max Planck Institute for Plant Breeding Research, Cologne, Germany.
  3. Marcel Bucher: Botanical Institute, Cologne Biocenter, Cluster of Excellence on Plant Sciences, University of Cologne, Cologne, Germany.

Abstract

The history of life consists of a series of major evolutionary transitions, including emergence and radiation of complex multicellular eukaryotes from unicellular ancestors. The cells of multicellular organisms, with few exceptions, contain the same genome, however, their organs are composed of a variety of cell types that differ in both structure and function. This variation is largely due to the transcriptional activity of different sets of genes in different cell types. This indicates that complex transcriptional regulation played a key role in the evolution of complexity in eukaryotes. In this review, we summarize how gene duplication and subsequent evolutionary innovations, including the structural evolution of nucleosomes and chromatin-related factors, contributed to the complexity of the transcriptional system and provided a basis for morphological diversity.

Keywords

References

  1. Nat Genet. 2006 Aug;38(8):948-52 [PMID: 16832354]
  2. Biochem Cell Biol. 2011 Feb;89(1):24-34 [PMID: 21326360]
  3. Trends Ecol Evol. 1998 Jan 1;13(1):15-20 [PMID: 21238179]
  4. Front Plant Sci. 2015 Mar 03;6:86 [PMID: 25784916]
  5. Science. 2001 Aug 10;293(5532):1129-33 [PMID: 11498589]
  6. Curr Biol. 2011 Jul 26;21(14):1215-9 [PMID: 21737279]
  7. BMC Genomics. 2016 Mar 08;17:201 [PMID: 26955946]
  8. Genome Biol Evol. 2015 Jun 08;7(7):1856-70 [PMID: 26058392]
  9. Trends Plant Sci. 2013 Nov;18(11):633-43 [PMID: 23910452]
  10. Nat Rev Genet. 2013 Feb;14(2):100-12 [PMID: 23329111]
  11. Biol Direct. 2008 Mar 17;3:8 [PMID: 18346280]
  12. Genome Res. 2014 Aug;24(8):1334-47 [PMID: 24835588]
  13. Front Plant Sci. 2014 May 28;5:223 [PMID: 24904618]
  14. Mol Microbiol. 2003 May;48(3):587-98 [PMID: 12694606]
  15. Evolution. 2007 May;61(5):995-1016 [PMID: 17492956]
  16. PLoS One. 2016 Jan 28;11(1):e0147908 [PMID: 26820416]
  17. Science. 2000 May 26;288(5470):1422-5 [PMID: 10827952]
  18. Proc Natl Acad Sci U S A. 2005 Apr 12;102(15):5454-9 [PMID: 15800040]
  19. Curr Opin Plant Biol. 2014 Feb;17:43-8 [PMID: 24507493]
  20. Nature. 2001 Feb 22;409(6823):1102-9 [PMID: 11234024]
  21. Biochim Biophys Acta. 2007 May-Jun;1769(5-6):316-29 [PMID: 17512990]
  22. Development. 2004 Nov;131(21):5263-76 [PMID: 15456723]
  23. Trends Plant Sci. 2016 Feb;21(2):96-101 [PMID: 26706443]
  24. Nat Rev Genet. 2010 Mar;11(3):204-20 [PMID: 20142834]
  25. Nature. 1998 Dec 3;396(6710):463-6 [PMID: 9853753]
  26. Nature. 1999 Sep 9;401(6749):157-61 [PMID: 10490023]
  27. Proc Natl Acad Sci U S A. 2018 Sep 25;115(39):E9239-E9246 [PMID: 30209216]
  28. Science. 2000 Nov 10;290(5494):1151-5 [PMID: 11073452]
  29. Science. 2001 Aug 10;293(5532):1074-80 [PMID: 11498575]
  30. Nature. 2003 Jul 10;424(6945):147-51 [PMID: 12853946]
  31. Nat Plants. 2018 Jan;4(1):14-22 [PMID: 29298993]
  32. Proc Natl Acad Sci U S A. 2011 Jun 21;108(25):10036-43 [PMID: 21593416]
  33. Plant J. 2014 May;78(4):706-14 [PMID: 24606212]
  34. FEBS Lett. 1996 May 13;386(1):75-81 [PMID: 8635608]
  35. Trends Genet. 2010 Sep;26(9):388-93 [PMID: 20675012]
  36. Mol Biol Evol. 2014 Jun;31(6):1402-13 [PMID: 24682283]
  37. Cold Spring Harb Perspect Biol. 2015 Dec 18;8(2):a018127 [PMID: 26684184]
  38. Nature. 2017 Jun 22;546(7659):524-527 [PMID: 28605751]
  39. Development. 2011 Mar;138(5):879-84 [PMID: 21247963]
  40. Proc Natl Acad Sci U S A. 1974 Aug;71(8):3028-30 [PMID: 4528784]
  41. Science. 2002 Nov 1;298(5595):1039-43 [PMID: 12351676]
  42. Nat Rev Genet. 2014 Jun;15(6):394-408 [PMID: 24805120]
  43. Science. 1975 Apr 11;188(4184):107-16 [PMID: 1090005]
  44. Curr Genomics. 2014 Feb;15(1):28-37 [PMID: 24653661]
  45. Trends Genet. 2004 Oct;20(10):461-4 [PMID: 15363896]
  46. Plant Physiol. 2014 Oct;166(2):570-80 [PMID: 25187527]
  47. BMC Evol Biol. 2008 Oct 24;8:294 [PMID: 18950507]
  48. Nat Commun. 2012;3:1297 [PMID: 23250427]
  49. Curr Opin Genet Dev. 1995 Oct;5(5):602-9 [PMID: 8664548]
  50. Nat Struct Mol Biol. 2008 May;15(5):469-76 [PMID: 18408732]
  51. BMC Genomics. 2010 Oct 20;11:588 [PMID: 20961426]
  52. Curr Biol. 2003 Dec 16;13(24):2212-7 [PMID: 14680640]
  53. Nucleic Acids Res. 2002 Dec 1;30(23):5036-55 [PMID: 12466527]
  54. Genome Biol Evol. 2017 Apr 1;9(4):843-854 [PMID: 28338820]
  55. Trends Genet. 2003 Feb;19(2):68-72 [PMID: 12547512]
  56. Nature. 1997 Apr 3;386(6624):485-8 [PMID: 9087405]
  57. Plant J. 2013 Sep;75(5):836-46 [PMID: 23675613]
  58. Mol Cell. 2004 Nov 5;16(3):479-85 [PMID: 15525519]
  59. Trends Cell Biol. 2014 Nov;24(11):619-31 [PMID: 25088669]
  60. Nature. 2010 Oct 21;467(7318):929-34 [PMID: 20962839]
  61. Development. 1995 Dec;121(12):4027-35 [PMID: 8575303]
  62. Proc Natl Acad Sci U S A. 2016 Nov 29;113(48):13911-13916 [PMID: 27849572]
  63. Science. 2000 Sep 15;289(5486):1920-1 [PMID: 10988069]
  64. Cell Res. 2011 Mar;21(3):381-95 [PMID: 21321607]
  65. Nature. 2004 Dec 2;432(7017):630-5 [PMID: 15577912]
  66. Nature. 2011 Jun 29;474(7353):598-603 [PMID: 21720363]
  67. Nat Rev Genet. 2008 Dec;9(12):938-50 [PMID: 19015656]
  68. Nat Rev Genet. 2005 Nov;6(11):836-46 [PMID: 16304599]
  69. Science. 2003 Jan 31;299(5607):716-9 [PMID: 12522258]
  70. Nat Rev Genet. 2017 Jul;18(7):411-424 [PMID: 28502977]
  71. Curr Opin Genet Dev. 2002 Apr;12(2):130-6 [PMID: 11893484]
  72. Cell. 2014 Jun 5;157(6):1445-1459 [PMID: 24856970]
  73. Nucleic Acids Res. 1997 Sep 15;25(18):3693-7 [PMID: 9278492]
  74. Genet Mol Biol. 2018;41(1 suppl 1):189-197 [PMID: 29505062]
  75. Nat Rev Microbiol. 2015 Jun;13(6):333-41 [PMID: 25944489]
  76. Nat Rev Genet. 2014 Apr;15(4):272-86 [PMID: 24614317]
  77. J Mol Biol. 2004 Apr 16;338(1):17-31 [PMID: 15050820]
  78. New Phytol. 2012 Jul;195(1):248-63 [PMID: 22510098]
  79. Mol Plant Microbe Interact. 2016 Sep;29(9):674-687 [PMID: 27482822]
  80. Cell. 2002 Oct 18;111(2):185-96 [PMID: 12408863]
  81. FASEB J. 2001 Jan;15(1):34-42 [PMID: 11149891]
  82. Nature. 2008 Aug 7;454(7205):762-5 [PMID: 18594508]
  83. Q Rev Biol. 1971 Jun;46(2):111-38 [PMID: 5160087]
  84. Nature. 1999 Jun 3;399(6735):491-6 [PMID: 10365964]
  85. Transcription. 2011 Nov-Dec;2(6):244-53 [PMID: 22223048]
  86. Cell. 2018 Nov 1;175(4):973-983.e14 [PMID: 30388454]
  87. Curr Biol. 2012 May 22;22(10):933-8 [PMID: 22560611]
  88. Genes Dev. 2016 Nov 1;30(21):2370-2375 [PMID: 27852629]
  89. Genome Biol Evol. 2015 May 07;7(6):1415-31 [PMID: 25956793]
  90. Genome Biol Evol. 2018 Jul 1;10(7):1730-1744 [PMID: 29982569]
  91. EMBO Rep. 2015 Nov;16(11):1439-53 [PMID: 26474902]
  92. BMC Biol. 2017 Jul 31;15(1):62 [PMID: 28756775]
  93. Science. 2014 Feb 14;343(6172):780-3 [PMID: 24531971]
  94. mBio. 2016 Mar 31;7(2):e01785 [PMID: 27034284]
  95. Curr Opin Microbiol. 2005 Dec;8(6):656-61 [PMID: 16256418]
  96. Nat Rev Mol Cell Biol. 2015 Mar;16(3):178-89 [PMID: 25650798]
  97. Trends Plant Sci. 2016 Jul;21(7):594-608 [PMID: 26920655]
  98. Proc Natl Acad Sci U S A. 2000 Oct 24;97(22):12176-81 [PMID: 11016950]
  99. Science. 1998 Oct 23;282(5389):754-9 [PMID: 9784136]
  100. Plant Cell. 2004 Jul;16(7):1679-91 [PMID: 15208398]
  101. Sci Am. 1978 Sep;239(3):140-6, 148-9, 152-3 passim [PMID: 705321]
  102. Microbiome. 2018 Mar 27;6(1):58 [PMID: 29587885]
  103. Plant Cell. 2003 Jul;15(7):1671-82 [PMID: 12837955]
  104. Nature. 2012 Aug 2;488(7409):116-20 [PMID: 22763441]
  105. Cell. 2015 Jan 29;160(3):554-66 [PMID: 25635462]
  106. Plant J. 2014 Oct;80(2):356-66 [PMID: 25053252]
  107. Nature. 1993 Mar 18;362(6417):219-23 [PMID: 8384699]
  108. Nat Commun. 2014 May 28;5:3978 [PMID: 24865297]
  109. Nat Rev Genet. 2012 Sep;13(9):613-26 [PMID: 22868264]
  110. Prog Mol Biol Transl Sci. 2011;101:25-104 [PMID: 21507349]
  111. Proc Natl Acad Sci U S A. 2018 May 1;115(18):4713-4718 [PMID: 29674453]
  112. Science. 1998 Apr 17;280(5362):446-50 [PMID: 9545225]
  113. Annu Rev Plant Biol. 2009;60:433-53 [PMID: 19575588]
  114. Curr Opin Genet Dev. 1996 Oct;6(5):526-30 [PMID: 8939721]
  115. Annu Rev Biophys. 2016 Jul 5;45:153-81 [PMID: 27391925]
  116. Cell. 2017 Sep 21;171(1):34-57 [PMID: 28938122]
  117. Cell. 2015 May 7;161(4):724-36 [PMID: 25957681]
  118. Cell. 2016 Nov 17;167(5):1170-1187 [PMID: 27863239]
  119. Nat Genet. 2002 Jun;31(2):205-9 [PMID: 12032571]
  120. G3 (Bethesda). 2015 Dec 08;6(2):397-422 [PMID: 26646152]
  121. Genome Biol Evol. 2016 Jul 02;8(6):1950-70 [PMID: 27345956]
  122. Proc Natl Acad Sci U S A. 1998 Nov 24;95(24):14361-6 [PMID: 9826705]
  123. Gigascience. 2014 May 14;3:9 [PMID: 24987520]
  124. New Phytol. 2018 Sep;219(4):1150-1153 [PMID: 29851097]
  125. Front Genet. 2014 Apr 02;5:65 [PMID: 24765100]
  126. Proc Natl Acad Sci U S A. 2013 Nov 26;110(48):19390-5 [PMID: 24218562]
  127. Proc Natl Acad Sci U S A. 2018 Mar 6;115(10):E2274-E2283 [PMID: 29463716]
  128. Genome Biol Evol. 2014 Mar;6(3):474-81 [PMID: 24532674]
  129. Genetics. 2005 Feb;169(2):1157-64 [PMID: 15654095]
  130. Bioessays. 2013 Sep;35(9):829-37 [PMID: 23801028]
  131. BMC Struct Biol. 2003 Jan 28;3:1 [PMID: 12553882]
  132. Nat Plants. 2015 Jan 08;1:14004 [PMID: 27246051]
  133. Development. 2015 Aug 15;142(16):2822-31 [PMID: 26220938]
  134. Nat Genet. 2002 Jun;31(2):200-4 [PMID: 12032567]
  135. Proc Natl Acad Sci U S A. 2017 Oct 31;114(44):E9403-E9412 [PMID: 28973917]
  136. Genetics. 2015 Jul;200(3):965-74 [PMID: 25943393]
  137. Nucleic Acids Res. 2006 May 31;34(10):2887-905 [PMID: 16738128]
  138. Proc Natl Acad Sci U S A. 2014 May 20;111(20):7474-9 [PMID: 24799676]
  139. EMBO J. 1988 May;7(5):1395-402 [PMID: 3409869]
  140. PLoS Genet. 2016 May 12;12(5):e1006026 [PMID: 27171427]
  141. Arabidopsis Book. 2010;8:e0128 [PMID: 22303254]
  142. Cell. 1999 Jul 9;98(1):1-4 [PMID: 10412974]
  143. Nat Rev Genet. 2018 Feb;19(2):81-92 [PMID: 29033456]
  144. Curr Opin Cell Biol. 2003 Apr;15(2):172-83 [PMID: 12648673]
  145. Science. 2008 Jan 4;319(5859):64-9 [PMID: 18079367]
  146. Proc Natl Acad Sci U S A. 2015 Oct 27;112(43):13390-5 [PMID: 26438870]
  147. Front Plant Sci. 2013 Aug 01;4:290 [PMID: 23914199]
  148. Nat Cell Biol. 2010 Jun;12(6):618-24 [PMID: 20473294]
  149. Nature. 2005 Aug 4;436(7051):714-9 [PMID: 16079849]
  150. Genome Biol Evol. 2011;3:1150-63 [PMID: 21859805]
  151. Exp Cell Res. 2014 Feb 1;321(1):40-6 [PMID: 24270012]
  152. Proc Natl Acad Sci U S A. 2014 Apr 22;111(16):5920-5 [PMID: 24711388]
  153. Rice (N Y). 2016 Dec;9(1):33 [PMID: 27447712]
  154. Trends Plant Sci. 2015 Oct;20(10):614-621 [PMID: 26440431]
  155. Nature. 2001 Nov 22;414(6862):462-70 [PMID: 11719809]
  156. Crit Rev Biochem Mol Biol. 2008 Nov-Dec;43(6):393-418 [PMID: 19037758]
  157. Nat Commun. 2017 Aug 18;8(1):283 [PMID: 28819201]
  158. Nat Genet. 2006 May;38(5):594-7 [PMID: 16642024]
  159. Nature. 1997 Mar 6;386(6620):44-51 [PMID: 9052779]
  160. Cell Res. 2011 Mar;21(3):396-420 [PMID: 21358755]
  161. Science. 2003 Nov 21;302(5649):1401-4 [PMID: 14631042]
  162. Nat Struct Biol. 2003 Nov;10(11):882-91 [PMID: 14583738]
  163. Philos Trans R Soc Lond B Biol Sci. 2015 Sep 26;370(1678):20140333 [PMID: 26323764]
  164. Nucleic Acids Res. 2010 Nov;38(21):7364-77 [PMID: 20675356]
  165. Science. 2012 Jun 15;336(6087):1448-51 [PMID: 22555433]
  166. Plant Physiol. 2015 Aug;168(4):1321-37 [PMID: 26059336]
  167. Mol Biol Evol. 2013 Aug;30(8):1830-42 [PMID: 23625888]
  168. PLoS Genet. 2016 Feb 12;12(2):e1005854 [PMID: 26870957]
  169. Cell. 2008 Nov 14;135(4):635-48 [PMID: 19013275]
  170. J Mol Evol. 1981;17(3):133-9 [PMID: 7265265]
  171. Genetics. 2017 Aug;206(4):2139-2148 [PMID: 28615283]
  172. Nat Rev Microbiol. 2010 Mar;8(3):185-95 [PMID: 20140026]
  173. Cell. 1988 Dec 23;55(6):1137-45 [PMID: 2849508]
  174. PLoS Comput Biol. 2006 May;2(5):e48 [PMID: 16733546]
  175. Science. 1999 Mar 5;283(5407):1476-81 [PMID: 10066161]

Word Cloud

Created with Highcharts 10.0.0transcriptionalevolutioncomplexityevolutionaryincludingcomplexmulticellulareukaryotescelltypesdifferentregulationgeneduplicationmorphologicalhistorylifeconsistsseriesmajortransitionsemergenceradiationunicellularancestorscellsorganismsexceptionscontaingenomehoweverorganscomposedvarietydifferstructurefunctionvariationlargelydueactivitysetsgenesindicatesplayedkeyrolereviewsummarizesubsequentinnovationsstructuralnucleosomeschromatin-relatedfactorscontributedsystemprovidedbasisdiversityChromatinEvolution-KeyInnovationsUnderpinningMorphologicalComplexitychromatinmicrobiotasymbiosis

Similar Articles

Cited By