A nanoelectronics-blood-based diagnostic biomarker for myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS).

R Esfandyarpour, A Kashi, M Nemat-Gorgani, J Wilhelmy, R W Davis
Author Information
  1. R Esfandyarpour: Department of Electrical Engineering and Computer Science, University of California, Irvine, CA 92697; rahimes@uci.edu krhong@stanford.edu.
  2. A Kashi: Stanford Genome Technology Center, Stanford University, Stanford, CA 94304.
  3. M Nemat-Gorgani: Stanford Genome Technology Center, Stanford University, Stanford, CA 94304.
  4. J Wilhelmy: Department of Biochemistry, School of Medicine, Stanford University, Stanford, CA 94304.
  5. R W Davis: Stanford Genome Technology Center, Stanford University, Stanford, CA 94304; rahimes@uci.edu krhong@stanford.edu. ORCID

Abstract

There is not currently a well-established, if any, biological test to diagnose myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS). The molecular aberrations observed in numerous studies of ME/CFS blood cells offer the opportunity to develop a diagnostic assay from blood samples. Here we developed a nanoelectronics assay designed as an ultrasensitive assay capable of directly measuring biomolecular interactions in real time, at low cost, and in a multiplex format. To pursue the goal of developing a reliable biomarker for ME/CFS and to demonstrate the utility of our platform for point-of-care diagnostics, we validated the array by testing patients with moderate to severe ME/CFS patients and healthy controls. The ME/CFS samples' response to the hyperosmotic stressor observed as a unique characteristic of the impedance pattern and dramatically different from the response observed among the control samples. We believe the observed robust impedance modulation difference of the samples in response to hyperosmotic stress can potentially provide us with a unique indicator of ME/CFS. Moreover, using supervised machine learning algorithms, we developed a classifier for ME/CFS patients capable of identifying new patients, required for a robust diagnostic tool.

Keywords

References

  1. Neuropsychol Rev. 2005 Mar;15(1):29-58 [PMID: 15929497]
  2. J Clin Pathol. 2004 Aug;57(8):891-3 [PMID: 15280416]
  3. Pharmacogenomics. 2006 Apr;7(3):429-40 [PMID: 16610953]
  4. Clin Diagn Lab Immunol. 2002 Jul;9(4):747-52 [PMID: 12093668]
  5. Clin Exp Immunol. 2005 Dec;142(3):505-11 [PMID: 16297163]
  6. Proc Natl Acad Sci U S A. 2017 Aug 22;114(34):E7150-E7158 [PMID: 28760971]
  7. Exp Eye Res. 2006 Apr;82(4):588-96 [PMID: 16202406]
  8. Microbiol Rev. 1989 Mar;53(1):121-47 [PMID: 2651863]
  9. J Transl Med. 2014 Apr 23;12:104 [PMID: 24755065]
  10. J Cell Physiol. 2006 Jan;206(1):9-15 [PMID: 15965902]
  11. Biotechnol Bioeng. 2014 Jun;111(6):1161-9 [PMID: 24338648]
  12. Exp Cell Res. 1997 Mar 15;231(2):354-62 [PMID: 9087177]
  13. Biochem Biophys Res Commun. 2000 Sep 24;276(2):571-8 [PMID: 11027515]
  14. Clin Exp Rheumatol. 2006 Mar-Apr;24(2):179-82 [PMID: 16762155]
  15. Clin Exp Immunol. 2005 Aug;141(2):326-32 [PMID: 15996197]
  16. Biomol Concepts. 2012 Aug;3(4):345-364 [PMID: 22977648]
  17. Psychiatry Res. 2005 Mar 30;134(1):101-4 [PMID: 15808295]
  18. J Immunol. 1987 Nov 15;139(10):3306-13 [PMID: 2824604]
  19. Biochim Biophys Acta. 2016 Nov;1863(11):2551-2559 [PMID: 27421986]
  20. Microbiol Mol Biol Rev. 2002 Jun;66(2):300-72 [PMID: 12040128]
  21. PLoS One. 2012;7(12):e51591 [PMID: 23284721]
  22. J Transl Med. 2013 Apr 09;11:93 [PMID: 23570606]
  23. Am J Respir Crit Care Med. 1999 Feb;159(2):634-40 [PMID: 9927384]
  24. J Intern Med. 2012 Mar;271(3):264-70 [PMID: 21793948]
  25. Proc Natl Acad Sci U S A. 2016 Sep 13;113(37):E5472-80 [PMID: 27573827]
  26. Med Hypotheses. 2008 Aug;71(2):270-4 [PMID: 18440157]
  27. Crit Care. 2008;12(4):R107 [PMID: 18710523]
  28. Autoimmun Rev. 2009 Feb;8(4):287-91 [PMID: 18801465]
  29. Int J Clin Exp Med. 2012;5(3):208-20 [PMID: 22837795]
  30. Proc Natl Acad Sci U S A. 1991 Sep 1;88(17):7896-900 [PMID: 1881923]
  31. Biomed Microdevices. 2016 Feb;18(1):7 [PMID: 26780442]
  32. PLoS One. 2015 Jul 06;10(7):e0132421 [PMID: 26147503]
  33. Clin Immunol Immunopathol. 1993 Dec;69(3):253-65 [PMID: 8242898]
  34. Biochimie. 2004 Aug;86(8):533-41 [PMID: 15388230]
  35. Mediators Inflamm. 2015;2015:197521 [PMID: 26783382]
  36. Sens Actuators B Chem. 2013 Feb;177:848-855 [PMID: 23355762]
  37. Lancet. 2006 Jan 28;367(9507):346-55 [PMID: 16443043]
  38. Mol Cell Biol. 2017 Feb 1;37(4): [PMID: 27920257]
  39. Nanotechnology. 2013 Nov 22;24(46):465301 [PMID: 24149048]
  40. J Cell Biochem. 2010 Feb 15;109(3):460-7 [PMID: 20024954]
  41. Nat Chem Biol. 2014 Apr;10(4):266-72 [PMID: 24509820]
  42. J Cell Biol. 2009 Nov 16;187(4):525-36 [PMID: 19948500]
  43. Curr Rheumatol Rep. 2017 Jan;19(1):1 [PMID: 28116577]
  44. J Clin Virol. 2006 Nov;37(3):139-50 [PMID: 16978917]
  45. Proc Natl Acad Sci U S A. 1995 Dec 19;92(26):12230-4 [PMID: 8618875]
  46. Sci Rep. 2018 Feb 9;8(1):2779 [PMID: 29426834]
  47. J Affect Disord. 2013 Sep 5;150(2):223-30 [PMID: 23664637]
  48. Biomicrofluidics. 2013 Aug 06;7(4):44114 [PMID: 24404047]
  49. Biochemistry (Mosc). 1999 Sep;64(9):1061-7 [PMID: 10521723]

Grants

  1. P01 HG000205/NHGRI NIH HHS

MeSH Term

Algorithms
Biomarkers
Case-Control Studies
Cell Line
Fatigue Syndrome, Chronic
Humans
Leukocytes, Mononuclear
Machine Learning
Nanotechnology

Chemicals

Biomarkers

Word Cloud

Created with Highcharts 10.0.0ME/CFSobserveddiagnosticpatientsmyalgicencephalomyelitis/chronicfatiguesyndromeassaysamplesbiomarkerresponseblooddevelopednanoelectronicscapablehyperosmoticuniqueimpedancerobustmachinelearningcurrentlywell-establishedbiologicaltestdiagnosemolecularaberrationsnumerousstudiescellsofferopportunitydevelopdesignedultrasensitivedirectlymeasuringbiomolecularinteractionsrealtimelowcostmultiplexformatpursuegoaldevelopingreliabledemonstrateutilityplatformpoint-of-carediagnosticsvalidatedarraytestingmoderateseverehealthycontrolssamples'stressorcharacteristicpatterndramaticallydifferentamongcontrolbelievemodulationdifferencestresscanpotentiallyprovideusindicatorMoreoverusingsupervisedalgorithmsclassifieridentifyingnewrequiredtoolnanoelectronics-blood-basedartificialintelligencebiosensor

Similar Articles

Cited By