Linkage-based genome assembly improvement of oil palm (Elaeis guineensis).

Ai-Ling Ong, Chee-Keng Teh, Qi-Bin Kwong, Praveena Tangaya, David Ross Appleton, Festo Massawe, Sean Mayes
Author Information
  1. Ai-Ling Ong: Biotechnology & Breeding Department, Sime Darby Plantation R&D Centre, Serdang, Selangor, Malaysia. ong.ailing.sdtc@simedarbyplantation.com.
  2. Chee-Keng Teh: Biotechnology & Breeding Department, Sime Darby Plantation R&D Centre, Serdang, Selangor, Malaysia.
  3. Qi-Bin Kwong: Biotechnology & Breeding Department, Sime Darby Plantation R&D Centre, Serdang, Selangor, Malaysia.
  4. Praveena Tangaya: Biotechnology & Breeding Department, Sime Darby Plantation R&D Centre, Serdang, Selangor, Malaysia.
  5. David Ross Appleton: Biotechnology & Breeding Department, Sime Darby Plantation R&D Centre, Serdang, Selangor, Malaysia.
  6. Festo Massawe: School of Biosciences, University of Nottingham Malaysia, Semenyih, Selangor, Malaysia. ORCID
  7. Sean Mayes: School of Biosciences, University of Nottingham, Leicestershire, UK. ORCID

Abstract

Meiotic crossovers in outbred species, such as oil palm (Elaeis guineensis Jacq., 2n = 32) contribute to allelic re-assortment in the genome. Such genetic variation is usually exploited in breeding to combine positive alleles for trait superiority. A good quality reference genome is essential for identifying the genetic factors underlying traits of interest through linkage or association studies. At the moment, an AVROS pisifera genome is publicly available for oil palm. Distribution and frequency of crossovers throughout chromosomes in different origins of oil palm are still unclear. Hence, an ultrahigh-density genomic linkage map of a commercial Deli dura x AVROS pisifera family was constructed using the OP200K SNP array, to evaluate the genetic alignment with the genome assembly. A total of 27,890 linked SNP markers generated a total map length of 1,151.7 cM and an average mapping interval of 0.04 cM. Nineteen linkage groups represented 16 pseudo-chromosomes of oil palm, with 61.7% of the mapped SNPs present in the published genome. Meanwhile, the physical map was also successfully extended from 658 Mb to 969 Mb by assigning unplaced scaffolds to the pseudo-chromosomes. A genic linkage map with major representation of sugar and lipid biosynthesis pathways was subsequently built for future studies on oil related quantitative trait loci (QTL). This study improves the current physical genome of the commercial oil palm, and provides important insights into its recombination landscape, eventually unlocking the full potential genome sequence-enabled biology for oil palm.

References

  1. Theor Appl Genet. 2008 Apr;116(6):815-24 [PMID: 18219476]
  2. Genome Biol. 2013;14(9):R103 [PMID: 24050704]
  3. Sci Rep. 2018 Jan 12;8(1):691 [PMID: 29330432]
  4. PLoS Genet. 2008 Oct;4(10):e1000212 [PMID: 18846212]
  5. Bioinformatics. 2017 Dec 1;33(23):3726-3732 [PMID: 29036272]
  6. Genetics. 2005 May;170(1):401-8 [PMID: 15781710]
  7. Bioinformatics. 2013 Dec 15;29(24):3128-34 [PMID: 24078685]
  8. J Plant Physiol. 2017 Jul;214:16-27 [PMID: 28419906]
  9. Microarrays (Basel). 2014 Nov 13;3(4):263-81 [PMID: 27600348]
  10. Genome Res. 2002 Apr;12(4):656-64 [PMID: 11932250]
  11. Hum Mol Genet. 2018 Aug 1;27(R2):R234-R241 [PMID: 29767702]
  12. J Hered. 2002 Jan-Feb;93(1):77-8 [PMID: 12011185]
  13. Nature. 2001 May 10;411(6834):199-204 [PMID: 11346797]
  14. Sci Rep. 2015 Feb 04;5:8232 [PMID: 25648560]
  15. BMC Genomics. 2014 Apr 27;15:309 [PMID: 24767304]
  16. Plant J. 2018 Sep;95(6):1039-1054 [PMID: 29952048]
  17. Theor Appl Genet. 2010 May;120(8):1673-87 [PMID: 20182696]
  18. Sci Rep. 2017 Nov 27;7(1):16394 [PMID: 29180623]
  19. BMC Genomics. 2017 Jun 21;18(1):470 [PMID: 28637447]
  20. Sci Rep. 2016 Jan 08;6:19075 [PMID: 26743827]
  21. Theor Appl Genet. 2005 Feb;110(4):754-65 [PMID: 15723275]
  22. Genet Res (Camb). 2011 Oct;93(5):343-9 [PMID: 21878144]
  23. Genome. 1997 Feb;40(1):116-22 [PMID: 18464812]
  24. Genomics. 2015 May;105(5-6):288-95 [PMID: 25702931]
  25. BMC Genomics. 2014 Aug 23;15:708 [PMID: 25150411]
  26. DNA Res. 2016 Dec;23(6):527-533 [PMID: 27426468]
  27. Nucleic Acids Res. 1999 Jan 1;27(1):29-34 [PMID: 9847135]
  28. BMC Genomics. 2009 Jul 28;10:338 [PMID: 19638193]
  29. Mol Plant. 2016 Aug 1;9(8):1132-1141 [PMID: 27112659]
  30. PLoS One. 2011;6(11):e26593 [PMID: 22069457]
  31. Nat Biotechnol. 2016 May 6;34(5):518-24 [PMID: 27153285]
  32. Am J Hum Genet. 2007 Sep;81(3):559-75 [PMID: 17701901]
  33. Nucleic Acids Res. 2015 Jan;43(Database issue):D204-12 [PMID: 25348405]
  34. Nature. 2013 Aug 15;500(7462):335-9 [PMID: 23883927]
  35. Nucleic Acids Res. 2016 Jan 4;44(D1):D67-72 [PMID: 26590407]
  36. Biochem Soc Trans. 2006 Aug;34(Pt 4):531-4 [PMID: 16856852]
  37. Genomics Proteomics Bioinformatics. 2015 Oct;13(5):278-89 [PMID: 26542840]

MeSH Term

Alleles
Arecaceae
Genetic Linkage
Genome, Plant
Genotype
Microsatellite Repeats
Palm Oil
Phenotype
Polymorphism, Single Nucleotide
Quantitative Trait Loci

Chemicals

Palm Oil

Word Cloud

Created with Highcharts 10.0.0oilgenomepalmlinkagemapgeneticcrossoversElaeisguineensistraitstudiesAVROSpisiferacommercialSNPassemblytotalpseudo-chromosomesphysicalMeioticoutbredspeciesJacq2n = 32contributeallelicre-assortmentvariationusuallyexploitedbreedingcombinepositiveallelessuperioritygoodqualityreferenceessentialidentifyingfactorsunderlyingtraitsinterestassociationmomentpubliclyavailableDistributionfrequencythroughoutchromosomesdifferentoriginsstillunclearHenceultrahigh-densitygenomicDeliduraxfamilyconstructedusingOP200Karrayevaluatealignment27890linkedmarkersgeneratedlength11517 cMaveragemappinginterval004 cMNineteengroupsrepresented16617%mappedSNPspresentpublishedMeanwhilealsosuccessfullyextended658 Mb969 MbassigningunplacedscaffoldsgenicmajorrepresentationsugarlipidbiosynthesispathwayssubsequentlybuiltfuturerelatedquantitativelociQTLstudyimprovescurrentprovidesimportantinsightsrecombinationlandscapeeventuallyunlockingfullpotentialsequence-enabledbiologyLinkage-basedimprovement

Similar Articles

Cited By (7)