CD13 tethers the IQGAP1-ARF6-EFA6 complex to the plasma membrane to promote ARF6 activation, β1 integrin recycling, and cell migration.

Mallika Ghosh, Robin Lo, Ivan Ivic, Brian Aguilera, Veneta Qendro, Charan Devarakonda, Linda H Shapiro
Author Information
  1. Mallika Ghosh: Center for Vascular Biology, Department of Cell Biology, University of Connecticut School of Medicine, Farmington, CT 06032, USA. mghosh@uchc.edu lshapiro@uchc.edu. ORCID
  2. Robin Lo: Center for Vascular Biology, Department of Cell Biology, University of Connecticut School of Medicine, Farmington, CT 06032, USA.
  3. Ivan Ivic: Center for Vascular Biology, Department of Cell Biology, University of Connecticut School of Medicine, Farmington, CT 06032, USA. ORCID
  4. Brian Aguilera: Center for Vascular Biology, Department of Cell Biology, University of Connecticut School of Medicine, Farmington, CT 06032, USA.
  5. Veneta Qendro: Center for Vascular Biology, Department of Cell Biology, University of Connecticut School of Medicine, Farmington, CT 06032, USA. ORCID
  6. Charan Devarakonda: Center for Vascular Biology, Department of Cell Biology, University of Connecticut School of Medicine, Farmington, CT 06032, USA.
  7. Linda H Shapiro: Center for Vascular Biology, Department of Cell Biology, University of Connecticut School of Medicine, Farmington, CT 06032, USA. mghosh@uchc.edu lshapiro@uchc.edu. ORCID

Abstract

Cell attachment to the extracellular matrix (ECM) requires a balance between integrin internalization and recycling to the surface that is mediated by numerous proteins, emphasizing the complexity of these processes. Upon ligand binding in various cells, the β1 integrin is internalized, traffics to early endosomes, and is returned to the plasma membrane through recycling endosomes. This trafficking process depends on the cyclical activation and inactivation of small guanosine triphosphatases (GTPases) by their specific guanine exchange factors (GEFs) and their GTPase-activating proteins (GAPs). In this study, we found that the cell surface antigen CD13, a multifunctional transmembrane molecule that regulates cell-cell adhesion and receptor-mediated endocytosis, also promoted cell migration and colocalized with β1 integrin at sites of cell adhesion and at the leading edge. A lack of CD13 resulted in aberrant trafficking of internalized β1 integrin to late endosomes and its ultimate degradation. Our data indicate that CD13 promoted ARF6 GTPase activity by positioning the ARF6-GEF EFA6 at the cell membrane. In migrating cells, a complex containing phosphorylated CD13, IQGAP1, GTP-bound (active) ARF6, and EFA6 at the leading edge promoted the ARF6 GTPase cycling and cell migration. Together, our findings uncover a role for CD13 in the fundamental cellular processes of receptor recycling, regulation of small GTPase activities, cell-ECM interactions, and cell migration.

References

  1. J Immunol. 2012 Jun 1;188(11):5489-99 [PMID: 22544935]
  2. J Cell Sci. 2005 May 15;118(Pt 10):2085-92 [PMID: 15890984]
  3. Blood. 2006 Apr 15;107(8):3145-52 [PMID: 16352809]
  4. Cancer Res. 2009 Feb 1;69(3):794-801 [PMID: 19155310]
  5. J Biol Chem. 2014 Oct 31;289(44):30237-48 [PMID: 25225293]
  6. J Cell Sci. 2012 Aug 15;125(Pt 16):3695-701 [PMID: 23027580]
  7. Nature. 2003 Mar 6;422(6927):37-44 [PMID: 12621426]
  8. Immunology. 2014 Aug;142(4):636-47 [PMID: 24627994]
  9. J Cell Biol. 2007 Jul 16;178(2):193-200 [PMID: 17620407]
  10. J Immunol. 2015 May 1;194(9):4466-76 [PMID: 25801433]
  11. J Leukoc Biol. 2015 Jul;98(1):85-98 [PMID: 25934926]
  12. EMBO J. 1999 Mar 15;18(6):1480-91 [PMID: 10075920]
  13. J Biol Chem. 2010 May 7;285(19):14610-6 [PMID: 20223830]
  14. J Biol Chem. 2011 Sep 30;286(39):34335-45 [PMID: 21795701]
  15. J Cell Sci. 2018 Feb 8;131(3): [PMID: 29246944]
  16. Stem Cells. 2014 Jun;32(6):1564-77 [PMID: 24307555]
  17. Am J Physiol Lung Cell Mol Physiol. 2008 Oct;295(4):L603-11 [PMID: 18676875]
  18. Curr Biol. 2015 Nov 16;25(22):R1092-105 [PMID: 26583903]
  19. Eur J Neurosci. 2007 Feb;25(3):618-28 [PMID: 17298598]
  20. EMBO Rep. 2015 Apr;16(4):427-46 [PMID: 25722290]
  21. Blood. 2003 Mar 1;101(5):1818-26 [PMID: 12406907]
  22. J Cell Sci. 2014 Dec 15;127(Pt 24):5189-203 [PMID: 25344254]
  23. J Cell Biol. 1996 Aug;134(4):935-47 [PMID: 8769418]
  24. J Immunol. 2013 Oct 1;191(7):3905-12 [PMID: 23997214]
  25. Mol Biol Cell. 2007 Jun;18(6):2244-53 [PMID: 17409355]
  26. J Biol Chem. 2002 Apr 5;277(14):12324-33 [PMID: 11809768]
  27. Small GTPases. 2013 Oct-Dec;4(4):199-207 [PMID: 24355937]
  28. J Leukoc Biol. 2006 Apr;79(4):719-30 [PMID: 16415167]
  29. J Cell Sci. 2011 Nov 15;124(Pt 22):3753-9 [PMID: 22114305]
  30. J Leukoc Biol. 2005 Jun;77(6):1008-17 [PMID: 15758076]
  31. Cardiovasc Res. 2013 Oct 1;100(1):74-83 [PMID: 23761403]
  32. Circ Res. 2004 Aug 6;95(3):276-83 [PMID: 15217908]
  33. CSH Protoc. 2006 Jul 01;2006(2): [PMID: 22485829]
  34. Nat Protoc. 2007;2(2):329-33 [PMID: 17406593]
  35. J Cell Sci. 2015 Mar 1;128(5):839-52 [PMID: 25663697]
  36. Physiol Rev. 2013 Jan;93(1):269-309 [PMID: 23303910]
  37. Science. 2003 Dec 5;302(5651):1704-9 [PMID: 14657486]
  38. Cell Signal. 2012 Apr;24(4):826-34 [PMID: 22182509]
  39. Arterioscler Thromb Vasc Biol. 2006 Dec;26(12):2681-7 [PMID: 16990557]
  40. Cell Signal. 2015 Mar;27(3):683-93 [PMID: 25435426]
  41. Blood. 2001 Feb 1;97(3):652-9 [PMID: 11157481]
  42. Curr Biol. 2006 Feb 7;16(3):315-20 [PMID: 16461286]
  43. J Cell Biol. 2004 Jul 19;166(2):237-48 [PMID: 15263019]
  44. J Biol Chem. 2003 Dec 5;278(49):49358-68 [PMID: 14507917]
  45. J Cell Sci. 2011 Dec 1;124(Pt 23):3923-7 [PMID: 22194302]
  46. Nat Methods. 2014 Aug;11(8):783-784 [PMID: 25075903]
  47. Nature. 1999 Feb 18;397(6720):621-5 [PMID: 10050856]
  48. Cell Signal. 2013 Oct;25(10):1955-61 [PMID: 23669310]
  49. J Cell Biol. 2012 Jun 25;197(7):983-96 [PMID: 22734003]
  50. J Cell Sci. 2011 Aug 1;124(Pt 15):2529-38 [PMID: 21750196]
  51. Methods Mol Biol. 2009;522:203-10 [PMID: 19247616]
  52. Semin Cell Dev Biol. 2011 Feb;22(1):39-47 [PMID: 20837153]
  53. J Leukoc Biol. 2008 Aug;84(2):448-59 [PMID: 18495788]
  54. J Biol Chem. 1992 Feb 5;267(4):2794-7 [PMID: 1346396]
  55. Dev Cell. 2013 Mar 11;24(5):472-85 [PMID: 23453597]
  56. Nat Cell Biol. 2012 May 06;14(6):584-92 [PMID: 22561348]
  57. J Neurosci. 2012 Jul 25;32(30):10352-64 [PMID: 22836268]
  58. J Biol Chem. 2014 Nov 28;289(48):33378-90 [PMID: 25296758]
  59. Biomed Res Int. 2013;2013:562984 [PMID: 24063007]
  60. Blood. 2007 Jul 1;110(1):142-50 [PMID: 17363739]
  61. FEBS Lett. 1992 Aug 10;308(1):14-7 [PMID: 1353730]
  62. J Cell Sci. 2013 Feb 1;126(Pt 3):722-31 [PMID: 23264734]
  63. Traffic. 2004 Jan;5(1):20-36 [PMID: 14675422]
  64. J Biol Chem. 1998 Jan 2;273(1):23-7 [PMID: 9417041]
  65. Front Physiol. 2014 Jan 09;4:402 [PMID: 24409152]
  66. J Immunol. 2014 Jun 15;192(12):6045-52 [PMID: 24835390]

Grants

  1. R01 HL125186/NHLBI NIH HHS
  2. R01 HL127449/NHLBI NIH HHS

MeSH Term

ADP-Ribosylation Factor 6
ADP-Ribosylation Factors
Animals
CD13 Antigens
Cell Adhesion
Cell Line, Tumor
Cell Membrane
Cell Movement
Endocytosis
Endosomes
Extracellular Matrix
Guanine Nucleotide Exchange Factors
HEK293 Cells
Humans
Integrin beta1
Mice, Inbred C57BL
Mice, Knockout
Monomeric GTP-Binding Proteins
Multiprotein Complexes
Protein Transport
ras GTPase-Activating Proteins

Chemicals

ADP-Ribosylation Factor 6
Guanine Nucleotide Exchange Factors
IQ motif containing GTPase activating protein 1
Integrin beta1
Multiprotein Complexes
ras GTPase-Activating Proteins
CD13 Antigens
ADP-Ribosylation Factors
ARF6 protein, human
Arf6 protein, mouse
Monomeric GTP-Binding Proteins

Word Cloud

Created with Highcharts 10.0.0cellCD13integrinrecyclingβ1migrationARF6endosomesmembranepromotedGTPasesurfaceproteinsprocessescellsinternalizedplasmatraffickingactivationsmalladhesionleadingedgeEFA6complexCellattachmentextracellularmatrixECMrequiresbalanceinternalizationmediatednumerousemphasizingcomplexityUponligandbindingvarioustrafficsearlyreturnedprocessdependscyclicalinactivationguanosinetriphosphatasesGTPasesspecificguanineexchangefactorsGEFsGTPase-activatingGAPsstudyfoundantigenmultifunctionaltransmembranemoleculeregulatescell-cellreceptor-mediatedendocytosisalsocolocalizedsiteslackresultedaberrantlateultimatedegradationdataindicateactivitypositioningARF6-GEFmigratingcontainingphosphorylatedIQGAP1GTP-boundactivecyclingTogetherfindingsuncoverrolefundamentalcellularreceptorregulationactivitiescell-ECMinteractionstethersIQGAP1-ARF6-EFA6promote

Similar Articles

Cited By