Exploring and mapping the universe of evolutionary graphs identifies structural properties affecting fixation probability and time.

Marius Möller, Laura Hindersin, Arne Traulsen
Author Information
  1. Marius Möller: 1Department of Evolutionary Theory, Max Planck Institute for Evolutionary Biology, D-24306 Plön, Germany.
  2. Laura Hindersin: 1Department of Evolutionary Theory, Max Planck Institute for Evolutionary Biology, D-24306 Plön, Germany.
  3. Arne Traulsen: 1Department of Evolutionary Theory, Max Planck Institute for Evolutionary Biology, D-24306 Plön, Germany. ORCID

Abstract

Population structure can be modeled by evolutionary graphs, which can have a substantial influence on the fate of mutants. Individuals are located on the nodes of these graphs, competing to take over the graph via the links. Applications for this framework range from the ecology of river systems and cancer initiation in colonic crypts to biotechnological search for optimal mutations. In all these applications, both the probability of fixation and the associated time are of interest. We study this problem for all undirected and unweighted graphs up to a certain size. We devise a genetic algorithm to find graphs with high or low fixation probability and short or long fixation time and study their structure searching for common themes. Our work unravels structural properties that maximize or minimize fixation probability and time, which allows us to contribute to a first map of the universe of evolutionary graphs.

Keywords

References

  1. PLoS Comput Biol. 2015 Nov 06;11(11):e1004437 [PMID: 26544962]
  2. Proc Natl Acad Sci U S A. 2003 Dec 9;100(25):14966-9 [PMID: 14657359]
  3. Proc Biol Sci. 2013 May 15;280(1762):20130211 [PMID: 23677339]
  4. Nature. 2005 Jan 20;433(7023):312-6 [PMID: 15662424]
  5. Phys Rev E Stat Nonlin Soft Matter Phys. 2008 Apr;77(4 Pt 1):041121 [PMID: 18517592]
  6. PLoS One. 2013;8(1):e54639 [PMID: 23382931]
  7. J R Soc Interface. 2014 Oct 6;11(99): [PMID: 25142521]
  8. Phys Rev E Stat Nonlin Soft Matter Phys. 2009 Jul;80(1 Pt 1):011909 [PMID: 19658731]
  9. Biosystems. 2013 Apr;112(1):49-54 [PMID: 23567507]
  10. J Theor Biol. 2018 Aug 14;451:10-18 [PMID: 29727631]
  11. J Evol Biol. 2018 Sep;31(9):1254-1267 [PMID: 29927009]
  12. R Soc Open Sci. 2015 Apr 29;2(4):140465 [PMID: 26064637]
  13. Sci Rep. 2014 May 22;4:5034 [PMID: 24849192]
  14. PLoS One. 2017 Jul 10;12(7):e0180549 [PMID: 28700698]
  15. Nat Commun. 2014 Mar 06;5:3409 [PMID: 24598979]
  16. Biosystems. 2016 Dec;150:87-91 [PMID: 27555086]
  17. Commun Biol. 2018 Jun 14;1:71 [PMID: 30271952]
  18. Biol Direct. 2016 Aug 23;11:41 [PMID: 27549612]
  19. Evolution. 2012 May;66(5):1613-23 [PMID: 22519794]
  20. Sci Rep. 2014 Oct 27;4:6692 [PMID: 25346111]
  21. Phys Rev Lett. 2006 May 12;96(18):188104 [PMID: 16712402]
  22. J Theor Biol. 2015 Oct 7;382:44-56 [PMID: 26122591]
  23. J Theor Biol. 2014 Jan 7;340:285-93 [PMID: 24096097]
  24. Sci Rep. 2017 Dec;7(1):82 [PMID: 28250441]
  25. Commun Biol. 2019 Apr 23;2:138 [PMID: 31044163]

MeSH Term

Algorithms
Biological Evolution
Data Display
Genetics, Population
Mutation
Population Dynamics
Probability
Reproduction
Selection, Genetic

Word Cloud

Created with Highcharts 10.0.0graphsfixationprobabilitytimeevolutionarystructurecanecologystudystructuralpropertiesuniversePopulationmodeledsubstantialinfluencefatemutantsIndividualslocatednodescompetingtakegraphvialinksApplicationsframeworkrangeriversystemscancerinitiationcoloniccryptsbiotechnologicalsearchoptimalmutationsapplicationsassociatedinterestproblemundirectedunweightedcertainsizedevisegeneticalgorithmfindhighlowshortlongsearchingcommonthemesworkunravelsmaximizeminimizeallowsuscontributefirstmapExploringmappingidentifiesaffectingComputationalmodelsEvolutionarytheoryTheoretical

Similar Articles

Cited By