FSEM: Functional Structural Equation Models for Twin Functional Data.

S Luo, R Song, M Styner, J H Gilmore, H Zhu
Author Information
  1. S Luo: Departments of Statistics, North Carolina State University, Cary, North Carolina, USA.
  2. R Song: Departments of Statistics, North Carolina State University, Cary, North Carolina, USA.
  3. M Styner: Department of Psychiatry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA.
  4. J H Gilmore: Department of Computer Science, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA.
  5. H Zhu: Department of Biostatistics, and Biomedical Research Imaging Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA.

Abstract

The aim of this paper is to develop a novel class of functional structural equation models (FSEMs) for dissecting functional genetic and environmental effects on twin functional data, while characterizing the varying association between functional data and covariates of interest. We propose a three-stage estimation procedure to estimate varying coefficient functions for various covariates (e.g., gender) as well as three covariance operators for the genetic and environmental effects. We develop an inference procedure based on weighted likelihood ratio statistics to test the genetic/environmental effect at either a fixed location or a compact region. We also systematically carry out the theoretical analysis of the estimated varying functions, the weighted likelihood ratio statistics, and the estimated covariance operators. We conduct extensive Monte Carlo simulations to examine the finite-sample performance of the estimation and inference procedures. We apply the proposed FSEM to quantify the degree of genetic and environmental effects on twin white-matter tracts obtained from the UNC early brain development study.

Keywords

References

  1. Neuroreport. 2001 Jun 13;12(8):1677-81 [PMID: 11409738]
  2. Nat Neurosci. 2001 Dec;4(12):1253-8 [PMID: 11694885]
  3. Nat Neurosci. 2002 Feb;5(2):83-4 [PMID: 11818967]
  4. Biometrics. 2002 Mar;58(1):121-8 [PMID: 11890306]
  5. Biometrics. 2006 Dec;62(4):1025-36 [PMID: 17156276]
  6. Hum Brain Mapp. 2007 Jun;28(6):464-73 [PMID: 17415783]
  7. Biometrics. 2008 Mar;64(1):280-8 [PMID: 17484777]
  8. Biometrics. 2009 Jun;65(2):584-9 [PMID: 18647295]
  9. Stat Interface. 2008;1(1):179-195 [PMID: 18978950]
  10. Neuroimage. 2009 Mar;45(1 Suppl):S133-42 [PMID: 19059345]
  11. Cereb Cortex. 2009 Nov;19(11):2728-35 [PMID: 19299253]
  12. Stat Med. 2009 Dec 20;28(29):3611-25 [PMID: 19731232]
  13. J R Stat Soc Series B Stat Methodol. 2006 Apr 1;68(2):179-199 [PMID: 19759841]
  14. Neuroimage. 2010 Nov 15;53(3):1085-92 [PMID: 20298793]
  15. Neuroimage. 2011 Feb 1;54(3):2308-17 [PMID: 20950689]
  16. Biometrics. 2011 Sep;67(3):987-95 [PMID: 21306354]
  17. Neuroimage. 2011 Jun 1;56(3):1412-25 [PMID: 21335092]
  18. Stat Med. 2011 Jul 10;30(15):1883-97 [PMID: 21491474]
  19. J R Stat Soc Series B Stat Methodol. 2011 Sep;73(4):559-578 [PMID: 21860598]
  20. IEEE Trans Med Imaging. 2012 May;31(5):1100-12 [PMID: 22287236]
  21. J Am Stat Assoc. 2011 Sep 1;106(495):1167-1179 [PMID: 22308015]
  22. Ann Stat. 2012 Oct 1;40(5):2634-2666 [PMID: 23645942]
  23. J Am Stat Assoc. 2013 Dec 19;108(504):null [PMID: 24376287]
  24. Neuropsychol Rev. 2015 Mar;25(1):27-46 [PMID: 25672928]
  25. Neuroimage. 2015 May 1;111:123-35 [PMID: 25700954]
  26. J Comput Graph Stat. 2015 Apr 1;24(2):477-501 [PMID: 26347592]
  27. Behav Genet. 1989 Jan;19(1):37-49 [PMID: 2712812]
  28. Behav Genet. 1970 Feb;1(1):11-9 [PMID: 5535855]
  29. J Magn Reson B. 1994 Mar;103(3):247-54 [PMID: 8019776]

Grants

  1. R01 MH111944/NIMH NIH HHS
  2. R01 MH086633/NIMH NIH HHS
  3. R01 MH070890/NIMH NIH HHS
  4. R01 HD053000/NICHD NIH HHS
  5. U01 MH070890/NIMH NIH HHS
  6. P01 CA142538/NCI NIH HHS
  7. R01 MH092335/NIMH NIH HHS

Word Cloud

Created with Highcharts 10.0.0functionalenvironmentaleffectsgeneticvaryinglikelihoodratioFunctionaldevelopstructuralequationtwindatacovariatesestimationprocedurefunctionscovarianceoperatorsinferenceweightedstatisticstestestimatedaimpapernovelclassmodelsFSEMsdissectingcharacterizingassociationinterestproposethree-stageestimatecoefficientvariouseggenderwellthreebasedgenetic/environmentaleffecteitherfixedlocationcompactregionalsosystematicallycarrytheoreticalanalysisconductextensiveMonteCarlosimulationsexaminefinite-sampleperformanceproceduresapplyproposedFSEMquantifydegreewhite-mattertractsobtainedUNCearlybraindevelopmentstudyFSEM:StructuralEquationModelsTwinDataCovariancefunctionmodelGeneticWeighted

Similar Articles

Cited By