Improving electrocoagulation floatation for harvesting microalgae.

Andrew Landels, Tracey A Beacham, Christopher T Evans, Giorgia Carnovale, Sofia Raikova, Isobel S Cole, Paul Goddard, Christopher Chuck, Michael J Allen
Author Information
  1. Andrew Landels: Department of Plant Sciences, Rothamsted Research, Harpenden AL5 2JQ, UK.
  2. Tracey A Beacham: Plymouth Marine Laboratory, Prospect Place, Plymouth PL1 3DH, UK.
  3. Christopher T Evans: Plymouth Marine Laboratory, Prospect Place, Plymouth PL1 3DH, UK.
  4. Giorgia Carnovale: Plymouth Marine Laboratory, Prospect Place, Plymouth PL1 3DH, UK.
  5. Sofia Raikova: Centre for Doctoral Training in Sustainable Chemical Technologies, Department of Chemical Engineering, University of Bath, Claverton Down, Bath BA2 7AY, UK.
  6. Isobel S Cole: Plymouth Marine Laboratory, Prospect Place, Plymouth PL1 3DH, UK.
  7. Paul Goddard: Amalga Technologies Ltd., 80 Park Road, Hampton Wick, Kingston on Thames, Surrey KT1 4AY, UK.
  8. Christopher Chuck: Department of Chemical Engineering, University of Bath, Claverton Down, Bath BA2 7AY, UK.
  9. Michael J Allen: Plymouth Marine Laboratory, Prospect Place, Plymouth PL1 3DH, UK.

Abstract

Electro-coagulation floatation (ECF) is a foam-floatation dewatering method that has been shown to be a highly effective, rapid, and scalable separation methodology. In this manuscript, an in-depth analysis of the gas and flocculant levels observed during the process is provided, with microbubbles observed in the 5-80 μm size range at a concentration of 10-10 bubbles mL. Electrolysis of microalgae culture was then observed, demonstrating both effective separation using aluminium electrodes (nine microalgal species tested, 1-40 μm size range, motile and non-motile, marine and freshwater), and sterilisation of culture through bleaching with inert titanium electrodes. Atomic force microscopy was used to visualise floc formation in the presence and absence of algae, showing nanoscale structures on the magnitude of 40-400 nm and entrapped microalgal cells. Improvements to aid industrial biotechnology processing were investigated: protein-doping was found to improve foam stability without inducing cell lysis, and an oxalate buffer wash regime was found to dissolve the flocculant whilst producing no observable difference in the final algal lipid or pigment profiles, leaving the cells viable at the end of the process. ECF separated microalgal culture had an algal biomass loading of 13% and as such was ideal for direct down-stream processing through hydrothermal liquefaction. High bio-crude yields were achieved, though this was reduced slightly on addition of the Al(OH) after ECF, with carbon being distributed away to the aqueous and solid residue phases. The amenability and compatibility of ECF to integration with, or replacement of, existing centrifugation and settling processes suggests this process may be of significant interest to the biotechnology industry.

Keywords

References

  1. J Hazard Mater. 2006 Feb 28;129(1-3):116-22 [PMID: 16203084]
  2. Biotechnol Rep (Amst). 2015 Sep;7:87-94 [PMID: 26753128]
  3. Water Res. 2012 May 1;46(7):2111-20 [PMID: 22326196]
  4. J Environ Monit. 2000 Feb;2(1):77-80 [PMID: 11256647]
  5. Food Chem Toxicol. 1984 May;22(5):391-7 [PMID: 6539288]
  6. Water Res. 2005 Aug;39(13):3098-108 [PMID: 16024063]
  7. Environ Sci Pollut Res Int. 2013 Apr;20(4):2184-92 [PMID: 22735981]
  8. Bioresour Technol. 2016 May;207:166-74 [PMID: 26881334]
  9. Biotechnol Adv. 2013 Nov;31(6):862-76 [PMID: 23632376]
  10. J Hazard Mater. 2005 Sep 30;124(1-3):247-54 [PMID: 15990229]
  11. Environ Microbiol Rep. 2011 Apr;3(2):195-202 [PMID: 21572525]
  12. Biotechnol Bioeng. 2013 Sep;110(9):2317-22 [PMID: 23733523]
  13. Biotechnol Bioeng. 2011 Oct;108(10):2320-9 [PMID: 21557200]
  14. Compr Rev Food Sci Food Saf. 2016 Nov;15(6):1104-1123 [PMID: 33401835]
  15. J Hazard Mater. 2009 May 15;164(1):215-22 [PMID: 18799259]
  16. J Hazard Mater. 2010 May 15;177(1-3):336-43 [PMID: 20042280]
  17. Bioresour Technol. 2008 Mar;99(5):914-21 [PMID: 17499502]
  18. Int J Toxicol. 2016 Nov;35(3 suppl):16S-33S [PMID: 27913785]
  19. J Toxicol Environ Health B Crit Rev. 2007;10 Suppl 1:1-269 [PMID: 18085482]
  20. Bioresour Technol. 2011 Jan;102(1):215-25 [PMID: 20599375]

Word Cloud

Created with Highcharts 10.0.0ECFfloatationobservedprocessculturemicroalgalElectro-coagulationeffectiveseparationflocculantsizerangemicroalgaeelectrodesforcemicroscopycellsbiotechnologyprocessingfoundalgalliquefactionHighfoam-floatationdewateringmethodshownhighlyrapidscalablemethodologymanuscriptin-depthanalysisgaslevelsprovidedmicrobubbles5-80 μmconcentration10-10bubblesmLElectrolysisdemonstratingusingaluminiumninespeciestested1-40 μmmotilenon-motilemarinefreshwatersterilisationbleachinginerttitaniumAtomicusedvisualiseflocformationpresenceabsencealgaeshowingnanoscalestructuresmagnitude40-400 nmentrappedImprovementsaidindustrialinvestigated:protein-dopingimprovefoamstabilitywithoutinducingcelllysisoxalatebufferwashregimedissolvewhilstproducingobservabledifferencefinallipidpigmentprofilesleavingviableendseparatedbiomassloading13%idealdirectdown-streamhydrothermalbio-crudeyieldsachievedthoughreducedslightlyadditionAlOHcarbondistributedawayaqueoussolidresiduephasesamenabilitycompatibilityintegrationreplacementexistingcentrifugationsettlingprocessessuggestsmaysignificantinterestindustryImprovingelectrocoagulationharvestingFlocculantspeedatomicHydrothermalMicroalgaeMicrobubbleSeparation

Similar Articles

Cited By