Computation and Simulation of Evolutionary Game Dynamics in Finite Populations.

Laura Hindersin, Bin Wu, Arne Traulsen, Julian García
Author Information
  1. Laura Hindersin: Department of Evolutionary Theory, Max Planck Institute for Evolutionary Biology, Plön, Germany.
  2. Bin Wu: School of Science, Beijing University of Posts and Telecommunications, Beijing, China.
  3. Arne Traulsen: Department of Evolutionary Theory, Max Planck Institute for Evolutionary Biology, Plön, Germany. traulsen@evolbio.mpg.de. ORCID
  4. Julian García: Faculty of Information Technology, Monash University, Melbourne, Australia.

Abstract

The study of evolutionary dynamics increasingly relies on computational methods, as more and more cases outside the range of analytical tractability are explored. The computational methods for simulation and numerical approximation of the relevant quantities are diverging without being compared for accuracy and performance. We thoroughly investigate these algorithms in order to propose a reliable standard. For expositional clarity we focus on symmetric 2 × 2 games leading to one-dimensional processes, noting that extensions can be straightforward and lessons will often carry over to more complex cases. We provide time-complexity analysis and systematically compare three families of methods to compute fixation probabilities, fixation times and long-term stationary distributions for the popular Moran process. We provide efficient implementations that substantially improve wall times over naive or immediate implementations. Implications are also discussed for the Wright-Fisher process, as well as structured populations and multiple types.

References

  1. J Theor Biol. 2007 Jun 7;246(3):522-9 [PMID: 17292423]
  2. J Theor Biol. 2017 May 7;420:232-240 [PMID: 28322875]
  3. Biosystems. 2016 Dec;150:87-91 [PMID: 27555086]
  4. Proc Natl Acad Sci U S A. 2002 May 14;99 Suppl 3:7229-36 [PMID: 12011402]
  5. J Theor Biol. 2017 Oct 27;431:1-10 [PMID: 28757073]
  6. Biosystems. 2012 Feb;107(2):66-80 [PMID: 22020107]
  7. Proc Natl Acad Sci U S A. 2006 Feb 28;103(9):3490-4 [PMID: 16484371]
  8. J Theor Biol. 2007 Jul 21;247(2):382-90 [PMID: 17462673]
  9. Phys Life Rev. 2016 Dec;19:1-26 [PMID: 27617905]
  10. Nature. 2006 May 25;441(7092):502-5 [PMID: 16724065]
  11. Proc Natl Acad Sci U S A. 2015 Dec 22;112(51):15636-41 [PMID: 26644569]
  12. Phys Rev E Stat Nonlin Soft Matter Phys. 2011 Sep;84(3 Pt 1):031907 [PMID: 22060403]
  13. J Theor Biol. 2012 Oct 21;311:28-39 [PMID: 22814475]
  14. J Theor Biol. 2016 Nov 21;409:38-46 [PMID: 27544416]
  15. PLoS One. 2017 Jul 10;12(7):e0180549 [PMID: 28700698]
  16. Proc Natl Acad Sci U S A. 2010 Mar 23;107(12):5500-4 [PMID: 20212124]
  17. Phys Rev E Stat Nonlin Soft Matter Phys. 2010 Oct;82(4 Pt 2):046106 [PMID: 21230344]
  18. Nature. 2017 Apr 13;544(7649):227-230 [PMID: 28355181]
  19. Proc Biol Sci. 2013 May 15;280(1762):20130211 [PMID: 23677339]
  20. J Theor Biol. 2006 Dec 7;243(3):437-43 [PMID: 16901509]
  21. J Math Biol. 2007 May;54(5):721-44 [PMID: 17252282]
  22. Nature. 2005 Jan 20;433(7023):312-6 [PMID: 15662424]
  23. Bull Math Biol. 2019 Nov;81(11):4840-4855 [PMID: 30097918]
  24. Nature. 2010 Aug 12;466(7308):861-3 [PMID: 20631710]
  25. Phys Rev E Stat Nonlin Soft Matter Phys. 2012 Apr;85(4 Pt 1):041901 [PMID: 22680492]
  26. J Theor Biol. 2014 Apr 7;346:23-33 [PMID: 24380778]
  27. Elife. 2017 Feb 15;6: [PMID: 28198700]
  28. Proc Natl Acad Sci U S A. 2013 Jan 22;110(4):1232-6 [PMID: 23297213]
  29. Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics. 1996 Jul;54(1):706-716 [PMID: 9965118]
  30. J Theor Biol. 2009 Aug 7;259(3):570-81 [PMID: 19358858]
  31. Phys Rev E. 2017 Jul;96(1-1):012313 [PMID: 29347209]
  32. Phys Rev E Stat Nonlin Soft Matter Phys. 2010 Jul;82(1 Pt 1):011925 [PMID: 20866666]
  33. Phys Rev E Stat Nonlin Soft Matter Phys. 2010 Jun;81(6 Pt 2):066122 [PMID: 20866493]
  34. PLoS Comput Biol. 2013;9(12):e1003381 [PMID: 24339769]
  35. J Math Biol. 2006 May;52(5):667-81 [PMID: 16463183]
  36. J Math Biol. 2017 Dec;75(6-7):1735-1774 [PMID: 28493042]
  37. J R Soc Interface. 2014 Oct 6;11(99): [PMID: 25142521]
  38. Bull Math Biol. 2006 Nov;68(8):1923-44 [PMID: 17086490]
  39. J Theor Biol. 2012 Jan 7;292:116-28 [PMID: 21907215]
  40. Proc Natl Acad Sci U S A. 2009 Jan 20;106(3):709-12 [PMID: 19124771]
  41. J Math Biol. 2014 Jan;68(1-2):109-43 [PMID: 23179131]
  42. Phys Rev E. 2017 Feb;95(2-1):022407 [PMID: 28297871]
  43. J Theor Biol. 2010 May 21;264(2):450-6 [PMID: 20167223]
  44. Eur J Cancer. 2001 Nov;37(16):2116-20 [PMID: 11597393]
  45. Phys Rev E Stat Nonlin Soft Matter Phys. 2006 Jul;74(1 Pt 1):011901 [PMID: 16907121]
  46. Phys Rev E Stat Nonlin Soft Matter Phys. 2006 Jul;74(1 Pt 1):011909 [PMID: 16907129]
  47. J Theor Biol. 2009 Mar 21;257(2):340-4 [PMID: 19111558]
  48. Nature. 2004 Apr 8;428(6983):646-50 [PMID: 15071593]
  49. Phys Life Rev. 2016 Dec;19:36-37 [PMID: 27914619]
  50. Phys Rev E Stat Nonlin Soft Matter Phys. 2015 Oct;92(4):042154 [PMID: 26565215]
  51. Bull Math Biol. 2004 Nov;66(6):1621-44 [PMID: 15522348]
  52. Phys Rev E Stat Nonlin Soft Matter Phys. 2010 Jan;81(1 Pt 2):016112 [PMID: 20365437]
  53. Proc Natl Acad Sci U S A. 1993 Jun 1;90(11):5091-4 [PMID: 8506355]
  54. Phys Life Rev. 2016 Dec;19:29-31 [PMID: 27810387]
  55. J Theor Biol. 2012 Apr 21;299:97-105 [PMID: 21473871]
  56. Theor Popul Biol. 2006 Nov;70(3):352-63 [PMID: 16987535]
  57. Phys Life Rev. 2009 Dec;6(4):208-49 [PMID: 20416850]
  58. Proc Natl Acad Sci U S A. 1993 Aug 15;90(16):7716-8 [PMID: 8356075]
  59. Phys Rev E Stat Nonlin Soft Matter Phys. 2005 Feb;71(2 Pt 2):025101 [PMID: 15783363]
  60. J Theor Biol. 2007 Nov 21;249(2):289-95 [PMID: 17826798]
  61. J Theor Biol. 2012 Oct 21;311:94-106 [PMID: 22814474]
  62. Phys Rev Lett. 2017 Feb 3;118(5):058301 [PMID: 28211729]
  63. PLoS Comput Biol. 2014 Apr 24;10(4):e1003567 [PMID: 24762474]
  64. Interface Focus. 2014 Aug 6;4(4):20140019 [PMID: 25097748]
  65. Genetics. 2015 Dec;201(4):1581-9 [PMID: 26500260]
  66. Proc Natl Acad Sci U S A. 2016 Aug 9;113(32):E4745-54 [PMID: 27450085]
  67. Phys Rev E. 2017 Jul;96(1-1):012414 [PMID: 29347142]
  68. J R Soc Interface. 2013 Jan 09;10(80):20120997 [PMID: 23303223]
  69. Theor Popul Biol. 1973 Mar;4(1):21-30 [PMID: 4726007]
  70. PLoS One. 2012;7(4):e35135 [PMID: 22529982]
  71. Nature. 2007 Aug 30;448(7157):1046-9 [PMID: 17728757]
  72. J Math Biol. 2012 Apr;64(5):803-27 [PMID: 21626364]
  73. Proc Natl Acad Sci U S A. 2009 May 26;106(21):8597-600 [PMID: 19416902]
  74. J Theor Biol. 2014 Jan 7;340:285-93 [PMID: 24096097]
  75. Sci Rep. 2017 Dec;7(1):82 [PMID: 28250441]
  76. Science. 2009 Feb 6;323(5915):721-3 [PMID: 19197046]
  77. Bull Math Biol. 2008 Jul;70(5):1410-24 [PMID: 18386099]
  78. Phys Rev E Stat Nonlin Soft Matter Phys. 2006 Aug;74(2 Pt 1):021905 [PMID: 17025470]
  79. J Math Biol. 2019 Jul;79(1):101-154 [PMID: 30963211]

Word Cloud

Created with Highcharts 10.0.0methodscomputationalcasesprovidefixationtimesprocessimplementationsstudyevolutionarydynamicsincreasinglyreliesoutsiderangeanalyticaltractabilityexploredsimulationnumericalapproximationrelevantquantitiesdivergingwithoutcomparedaccuracyperformancethoroughlyinvestigatealgorithmsorderproposereliablestandardexpositionalclarityfocussymmetric2 × 2gamesleadingone-dimensionalprocessesnotingextensionscanstraightforwardlessonswilloftencarrycomplextime-complexityanalysissystematicallycomparethreefamiliescomputeprobabilitieslong-termstationarydistributionspopularMoranefficientsubstantiallyimprovewallnaiveimmediateImplicationsalsodiscussedWright-FisherwellstructuredpopulationsmultipletypesComputationSimulationEvolutionaryGameDynamicsFinitePopulations

Similar Articles

Cited By