A microscale biomimetic platform for generation and electro-mechanical stimulation of 3D cardiac microtissues.

Roberta Visone, Giuseppe Talò, Paola Occhetta, Daniela Cruz-Moreira, Silvia Lopa, Omar Antonio Pappalardo, Alberto Redaelli, Matteo Moretti, Marco Rasponi
Author Information
  1. Roberta Visone: Department of Electronics, Information and Bioengineering, Politecnico di Milano, 20133 Milan, Italy.
  2. Giuseppe Talò: Cell and Tissue Engineering Lab, IRCCS Istituto Ortopedico Galeazzi, 20161 Milan, Italy.
  3. Daniela Cruz-Moreira: Department of Electronics, Information and Bioengineering, Politecnico di Milano, 20133 Milan, Italy.
  4. Silvia Lopa: Cell and Tissue Engineering Lab, IRCCS Istituto Ortopedico Galeazzi, 20161 Milan, Italy.
  5. Omar Antonio Pappalardo: Department of Electronics, Information and Bioengineering, Politecnico di Milano, 20133 Milan, Italy. ORCID
  6. Alberto Redaelli: Department of Electronics, Information and Bioengineering, Politecnico di Milano, 20133 Milan, Italy. ORCID
  7. Marco Rasponi: Department of Electronics, Information and Bioengineering, Politecnico di Milano, 20133 Milan, Italy. ORCID

Abstract

Organs-on-chip technology has recently emerged as a promising tool to generate advanced cardiac tissue models, by recapitulating key physiological cues of the native myocardium. Biochemical, mechanical, and electrical stimuli have been investigated and demonstrated to enhance the maturation of cardiac constructs. However, the combined application of such stimulations on 3D organized constructs within a microfluidic platform was not yet achieved. For this purpose, we developed an innovative microbioreactor designed to provide a uniform electric field and cyclic uniaxial strains to 3D cardiac microtissues, recapitulating the complex electro-mechanical environment of the heart. The platform encompasses a compartment to confine and culture cell-laden hydrogels, a pressure-actuated chamber to apply a cyclic uniaxial stretch to microtissues, and stainless-steel electrodes to accurately regulate the electric field. The platform was exploited to investigate the effect of two different electrical stimulation patterns on cardiac microtissues from neonatal rat cardiomyocytes: a controlled electric field [5 V/cm, or low voltage (LV)] and a controlled current density [74.4 mA/cm, or high voltage (HV)]. Our results demonstrated that LV stimulation enhanced the beating properties of the microtissues. By fully exploiting the platform, we combined the LV electrical stimulation with a physiologic mechanical stretch (10% strain) to recapitulate the key cues of the native cardiac microenvironment. The proposed microbioreactor represents an innovative tool to culture improved miniaturized cardiac tissue models for basic research studies on heart physiopathology and for drug screening.

References

  1. Cardiovasc Res. 2000 Jul;47(1):23-37 [PMID: 10869527]
  2. Am J Physiol Heart Circ Physiol. 2001 Jan;280(1):H168-78 [PMID: 11123231]
  3. Proc Natl Acad Sci U S A. 2003 Apr 29;100(9):5543-8 [PMID: 12700358]
  4. Proc Natl Acad Sci U S A. 2004 Dec 28;101(52):18129-34 [PMID: 15604141]
  5. Nat Rev Mol Cell Biol. 2006 Mar;7(3):211-24 [PMID: 16496023]
  6. Nature. 2006 Jul 27;442(7101):368-73 [PMID: 16871203]
  7. Cell. 2006 Aug 25;126(4):677-89 [PMID: 16923388]
  8. Nat Protoc. 2009;4(2):155-73 [PMID: 19180087]
  9. Proc Natl Acad Sci U S A. 2009 Jun 23;106(25):10097-102 [PMID: 19541627]
  10. Lab Chip. 2010 Mar 21;10(6):692-700 [PMID: 20221556]
  11. Tissue Eng Part C Methods. 2010 Dec;16(6):1417-26 [PMID: 20367291]
  12. Circ Res. 2010 May 28;106(10):1592-602 [PMID: 20378856]
  13. Lab Chip. 2010 Aug 21;10(16):2019-31 [PMID: 20556297]
  14. Lab Chip. 2011 May 7;11(9):1593-5 [PMID: 21437315]
  15. J Tissue Eng Regen Med. 2011 Jun;5(6):e115-25 [PMID: 21604379]
  16. Lab Chip. 2011 Dec 21;11(24):4165-73 [PMID: 22072288]
  17. Tissue Eng Part A. 2012 May;18(9-10):910-9 [PMID: 22092279]
  18. J Tissue Eng Regen Med. 2012 Nov;6(10):e12-23 [PMID: 22170772]
  19. Nat Protoc. 2013 Jan;8(1):162-75 [PMID: 23257984]
  20. Int J Biomed Sci. 2012 Jun;8(2):109-20 [PMID: 23675263]
  21. Nat Methods. 2013 Aug;10(8):781-7 [PMID: 23793239]
  22. Curr Opin Biotechnol. 2013 Oct;24(5):926-32 [PMID: 23932513]
  23. Proc Natl Acad Sci U S A. 2013 Dec 3;110(49):E4698-707 [PMID: 24255110]
  24. Lab Chip. 2014 Mar 7;14(5):869-82 [PMID: 24352498]
  25. Tissue Eng Part A. 2014 Jun;20(11-12):1654-67 [PMID: 24410342]
  26. Biotechnol Bioeng. 2014 Jul;111(7):1452-63 [PMID: 24473977]
  27. Methods Cell Biol. 2014;121:191-211 [PMID: 24560511]
  28. Cold Spring Harb Perspect Med. 2014 Mar 01;4(3):null [PMID: 24591534]
  29. J Mol Cell Cardiol. 2014 Sep;74:151-61 [PMID: 24852842]
  30. Prog Biophys Mol Biol. 2014 Aug;115(2-3):93-102 [PMID: 24983489]
  31. Nat Biotechnol. 2014 Aug;32(8):760-72 [PMID: 25093883]
  32. Prog Biophys Mol Biol. 2014 Aug;115(2-3):279-93 [PMID: 25175338]
  33. Anal Chem. 2015 Feb 17;87(4):2107-13 [PMID: 25539164]
  34. Sci Rep. 2015 Mar 09;5:8883 [PMID: 25748532]
  35. Biomaterials. 2015 Aug;60:82-91 [PMID: 25985155]
  36. Biomed Mater. 2015 Jun 11;10(3):034006 [PMID: 26065674]
  37. Lab Chip. 2015 Aug 7;15(15):3242-9 [PMID: 26135270]
  38. Sci Rep. 2015 Jul 02;5:11800 [PMID: 26135970]
  39. Adv Drug Deliv Rev. 2016 Jan 15;96:135-55 [PMID: 26232525]
  40. Biotechnol Bioeng. 2016 Apr;113(4):859-69 [PMID: 26444553]
  41. Lab Chip. 2016 Feb 7;16(3):599-610 [PMID: 26758922]
  42. Sci Rep. 2016 Apr 20;6:24726 [PMID: 27095412]
  43. Stem Cells Int. 2016;2016:4287158 [PMID: 27110250]
  44. Molecules. 2016 Aug 26;21(9): [PMID: 27571058]
  45. Circulation. 2016 Nov 15;134(20):1557-1567 [PMID: 27737958]
  46. Elife. 2017 Mar 18;6: [PMID: 28315522]
  47. J Vis Exp. 2017 May 6;(123): [PMID: 28518082]
  48. Proc Natl Acad Sci U S A. 2017 Oct 3;114(40):E8372-E8381 [PMID: 28916735]
  49. Nature. 2018 Apr;556(7700):239-243 [PMID: 29618819]
  50. Micromachines (Basel). 2016 Dec 15;7(12):null [PMID: 30404405]
  51. Biochim Biophys Acta. 1975 Dec 31;417(3-4):211-36 [PMID: 766836]

Word Cloud

Created with Highcharts 10.0.0cardiacplatformmicrotissuesstimulationelectrical3DelectricfieldLVtooltissuemodelsrecapitulatingkeycuesnativemechanicaldemonstratedconstructscombinedinnovativemicrobioreactorcyclicuniaxialelectro-mechanicalheartculturestretchcontrolledvoltage]Organs-on-chiptechnologyrecentlyemergedpromisinggenerateadvancedphysiologicalmyocardiumBiochemicalstimuliinvestigatedenhancematurationHoweverapplicationstimulationsorganizedwithinmicrofluidicyetachievedpurposedevelopeddesignedprovideuniformstrainscomplexenvironmentencompassescompartmentconfinecell-ladenhydrogelspressure-actuatedchamberapplystainless-steelelectrodesaccuratelyregulateexploitedinvestigateeffecttwodifferentpatternsneonatalratcardiomyocytes:[5 V/cmlowcurrentdensity[744 mA/cmhighHVresultsenhancedbeatingpropertiesfullyexploitingphysiologic10%strainrecapitulatemicroenvironmentproposedrepresentsimprovedminiaturizedbasicresearchstudiesphysiopathologydrugscreeningmicroscalebiomimeticgeneration

Similar Articles

Cited By