HIV Vaccine Mystery and Viral Shell Disorder.

Gerard Kian-Meng Goh, A Keith Dunker, James A Foster, Vladimir N Uversky
Author Information
  1. Gerard Kian-Meng Goh: Goh's BioComputing, Singapore 548957, Singapore. gohsbiocomputing@yahoo.com. ORCID
  2. A Keith Dunker: Center for Computational Biology, Indiana and Bioinformatics, Indiana University School of Medicine, Indianapolis, IN 46202, USA. kedunker@iupui.edu. ORCID
  3. James A Foster: Department of Biological Sciences, University of Idaho, Moscow, ID 83844, USA. foster@uidaho.edu.
  4. Vladimir N Uversky: Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA. vuversky@health.usf.edu. ORCID

Abstract

Hundreds of billions of dollars have been spent for over three decades in the search for an effective human immunodeficiency virus (HIV) vaccine with no success. There are also at least two other sexually transmitted viruses, for which no vaccine is available, the herpes simplex virus (HSV) and the hepatitis C virus (HCV). Traditional textbook explanatory paradigm of rapid mutation of retroviruses cannot adequately address the unavailability of vaccine for many sexually transmissible viruses, since HSV and HCV are DNA and non-retroviral RNA viruses, respectively, whereas effective vaccine for the horsefly-transmitted retroviral cousin of HIV, equine infectious anemia virus (EIAV), was found in 1973. We reported earlier the highly disordered nature of proteins in outer shells of the HIV, HCV, and HSV. Such levels of disorder are completely absent among the classical viruses, such as smallpox, rabies, yellow fever, and polio viruses, for which efficient vaccines were discovered. This review analyzes the physiology and shell disorder of the various related and non-related viruses to argue that EIAV and the classical viruses need harder shells to survive during harsher conditions of non-sexual transmissions, thus making them vulnerable to antibody detection and neutralization. In contrast, the outer shell of the HIV-1 (with its preferential sexual transmission) is highly disordered, thereby allowing large scale motions of its surface glycoproteins and making it difficult for antibodies to bind to them. The theoretical underpinning of this concept is retrospectively traced to a classical 1920s experiment by the legendary scientist, Oswald Avery. This concept of viral shapeshifting has implications for improved treatment of cancer and infections via immune evasion.

Keywords

References

  1. J Exp Med. 1931 Jul 31;54(3):437-47 [PMID: 19869930]
  2. Cancers (Basel). 2018 Apr 19;10(4): [PMID: 29671772]
  3. Protein Sci. 2015 Feb;24(2):221-35 [PMID: 25424537]
  4. Braz J Infect Dis. 2014 Mar-Apr;18(2):150-7 [PMID: 24211628]
  5. Arch Gesamte Virusforsch. 1973;42(4):361-70 [PMID: 4358259]
  6. Mol Biosyst. 2015 Aug;11(8):2312-23 [PMID: 26080321]
  7. J Mol Biol. 1997 Nov 28;274(2):152-9 [PMID: 9398523]
  8. Biochemistry. 1998 Dec 1;37(48):17054-67 [PMID: 9836601]
  9. J Virol. 2011 Sep;85(18):9599-613 [PMID: 21734045]
  10. Microb Pathog. 2015 Jan;78:1-6 [PMID: 25448132]
  11. Vet Res. 2004 Jul-Aug;35(4):485-512 [PMID: 15236678]
  12. PLoS Negl Trop Dis. 2013 Apr 25;7(4):e2183 [PMID: 23638204]
  13. AIDS Res Hum Retroviruses. 1996 Mar 20;12(5):413-5 [PMID: 8882322]
  14. Emerg Infect Dis. 2005 May;11(5):689-93 [PMID: 15890120]
  15. Semin Oncol. 2016 Dec;43(6):638-646 [PMID: 28061981]
  16. Virol J. 2008 Oct 23;5:126 [PMID: 18947403]
  17. J Biomol Struct Dyn. 2012;30(2):137-49 [PMID: 22702725]
  18. Nat Rev Immunol. 2002 Sep;2(9):706-13 [PMID: 12209139]
  19. Biochemistry. 2007 Nov 27;46(47):13468-77 [PMID: 17973494]
  20. Sci Rep. 2017 Oct 20;7(1):13666 [PMID: 29057909]
  21. AIDS. 2011 Nov 13;25(17):F21-7 [PMID: 21857492]
  22. Protein Pept Lett. 2010 Aug;17(8):932-51 [PMID: 20450483]
  23. J Exp Med. 1929 Sep 30;50(4):521-31 [PMID: 19869644]
  24. J Mol Biol. 1999 Oct 22;293(2):321-31 [PMID: 10550212]
  25. J Virol. 2014 May;88(10):5706-17 [PMID: 24623414]
  26. Retrovirology. 2014 Mar 21;11:26 [PMID: 24656154]
  27. Sci Rep. 2017 Jul 26;7(1):6555 [PMID: 28747658]
  28. Cell Mol Life Sci. 2012 Apr;69(8):1211-59 [PMID: 22033837]
  29. PLoS Curr. 2013 Nov 13;5: [PMID: 24270586]
  30. Biochim Biophys Acta. 2014 Mar;1844(3):520-6 [PMID: 24373876]
  31. Mol Biosyst. 2015 Aug;11(8):2337-44 [PMID: 26086270]
  32. Mol Biosyst. 2014 Jun;10(6):1345-63 [PMID: 24752801]
  33. J Exp Med. 1929 Sep 30;50(4):533-50 [PMID: 19869645]
  34. Clin Microbiol Infect. 2012 Oct;18 Suppl 5:1-6 [PMID: 22882766]
  35. Hum Gene Ther. 2018 Feb;29(2):151-159 [PMID: 29284308]
  36. Proteins. 2001 Jan 1;42(1):38-48 [PMID: 11093259]
  37. J Exp Med. 2007 Nov 26;204(12):2779-84 [PMID: 18039952]
  38. J Biol Chem. 1996 Jan 19;271(3):1379-84 [PMID: 8576127]
  39. Int J Infect Dis. 2016 Aug;49:47-58 [PMID: 27270138]
  40. J Virol. 2008 Apr;82(8):4052-63 [PMID: 18234792]
  41. N Engl J Med. 2012 Jan 5;366(1):34-43 [PMID: 22216840]
  42. Arch Virol. 2010 Oct;155(10):1687-92 [PMID: 20607317]
  43. J Pathog. 2012;2012:738590 [PMID: 23097708]
  44. Front Med (Lausanne). 2017 Oct 03;4:163 [PMID: 29043249]
  45. Virol J. 2009 Jun 03;6:69 [PMID: 19493338]
  46. Retrovirology. 2016 Feb 03;13:9 [PMID: 26842878]
  47. Sci Rep. 2017 Mar 13;7:44084 [PMID: 28287142]
  48. Genome Inform Ser Workshop Genome Inform. 1999;10:41-50 [PMID: 11072341]
  49. Protein Cell. 2010 Nov;1(11):987-98 [PMID: 21153516]
  50. Proc (Bayl Univ Med Cent). 2005 Jan;18(1):21-5 [PMID: 16200144]
  51. Biochemistry. 2005 Sep 20;44(37):12454-70 [PMID: 16156658]
  52. Trends Microbiol. 2007 May;15(5):211-8 [PMID: 17398101]
  53. Bioessays. 2015 Jan;37(1):6-9 [PMID: 25521633]
  54. Proteins. 2000 Nov 15;41(3):415-27 [PMID: 11025552]
  55. BMJ. 2006 Jan 21;332(7534):170-2 [PMID: 16424499]
  56. Vaccine. 2013 Aug 2;31(35):3502-18 [PMID: 23707164]
  57. Trends Biochem Sci. 2002 Oct;27(10):527-33 [PMID: 12368089]
  58. Am J Dis Child. 1993 Jul;147(7):772-4 [PMID: 8322750]
  59. BMC Genomics. 2008 Sep 16;9 Suppl 2:S4 [PMID: 18831795]
  60. Mol Biosyst. 2016 May 24;12(6):1881-91 [PMID: 27102744]
  61. Acta Derm Venereol. 2006;86(2):129-34 [PMID: 16648915]
  62. J Mol Graph Model. 2001;19(1):26-59 [PMID: 11381529]
  63. J Infect Dis. 2011 Nov;204 Suppl 3:S817-24 [PMID: 21987757]
  64. Proc Natl Acad Sci U S A. 2013 Jan 8;110(2):666-71 [PMID: 23267097]
  65. Biochemistry. 2002 May 28;41(21):6573-82 [PMID: 12022860]
  66. Indian J Med Res. 2004 Jan;119(1):1-17 [PMID: 14997988]

MeSH Term

AIDS Vaccines
Animals
HIV-1
Humans
Immune Evasion
Intrinsically Disordered Proteins
Viral Proteins
Virus Latency

Chemicals

AIDS Vaccines
Intrinsically Disordered Proteins
Viral Proteins

Word Cloud

Created with Highcharts 10.0.0virusesHIVvirusvaccineHSVHCVdisorderclassicaleffectivesexuallyherpeshepatitisEIAVhighlydisorderedoutershellssmallpoxrabiesyellowfeverpolioshellmakingconceptimmuneHundredsbillionsdollarsspentthreedecadessearchhumanimmunodeficiencysuccessalsoleasttwotransmittedavailablesimplexCTraditionaltextbookexplanatoryparadigmrapidmutationretrovirusesadequatelyaddressunavailabilitymanytransmissiblesinceDNAnon-retroviralRNArespectivelywhereashorsefly-transmittedretroviralcousinequineinfectiousanemiafound1973reportedearliernatureproteinslevelscompletelyabsentamongefficientvaccinesdiscoveredreviewanalyzesphysiologyvariousrelatednon-relatedargueneedhardersurviveharsherconditionsnon-sexualtransmissionsthusvulnerableantibodydetectionneutralizationcontrastHIV-1preferentialsexualtransmissiontherebyallowinglargescalemotionssurfaceglycoproteinsdifficultantibodiesbindtheoreticalunderpinningretrospectivelytraced1920sexperimentlegendaryscientistOswaldAveryviralshapeshiftingimplicationsimprovedtreatmentcancerinfectionsviaevasionVaccineMysteryViralShellDisorderglycoconjugateescapeintrinsicunstructured

Similar Articles

Cited By