Protobiotic Systems Chemistry Analyzed by Molecular Dynamics.

Amit Kahana, Doron Lancet
Author Information
  1. Amit Kahana: Dept. Molecular Genetics, The Weizmann Institute of Science, Rehovot 7610010, Israel. amitmiti@gmail.com.
  2. Doron Lancet: Dept. Molecular Genetics, The Weizmann Institute of Science, Rehovot 7610010, Israel. doron.lancet@weizmann.ac.il. ORCID

Abstract

Systems chemistry has been a key component of origin of life research, invoking models of life's inception based on evolving molecular networks. One such model is the graded autocatalysis replication domain (GARD) formalism embodied in a lipid world scenario, which offers rigorous computer simulation based on defined chemical kinetics equations. GARD suggests that the first pre-RNA life-like entities could have been homeostatically-growing assemblies of amphiphiles, undergoing compositional replication and mutations, as well as rudimentary selection and evolution. Recent progress in molecular dynamics has provided an experimental tool to study complex biological phenomena such as protein folding, ligand-receptor interactions, and micellar formation, growth, and fission. The detailed molecular definition of GARD and its inter-molecular catalytic interactions make it highly compatible with molecular dynamics analyses. We present a roadmap for simulating GARD's kinetic and thermodynamic behavior using various molecular dynamics methodologies. We review different approaches for testing the validity of the GARD model by following micellar accretion and fission events and examining compositional changes over time. Near-future computational advances could provide empirical delineation for further system complexification, from simple compositional non-covalent assemblies towards more life-like protocellular entities with covalent chemistry that underlies metabolism and genetic encoding.

Keywords

References

  1. Langmuir. 2015 Mar 17;31(10):2931-5 [PMID: 25740116]
  2. Langmuir. 2016 Aug 16;32(32):8275-86 [PMID: 27442259]
  3. J Mol Evol. 1982;18(5):344-50 [PMID: 7120429]
  4. Proc Natl Acad Sci U S A. 2000 Apr 11;97(8):4112-7 [PMID: 10760281]
  5. Biopolymers. 2007 Apr 5-15;85(5-6):407-21 [PMID: 17252562]
  6. ACS Nano. 2017 Aug 22;11(8):7858-7868 [PMID: 28723067]
  7. J Theor Biol. 1997 Aug 21;187(4):583-93 [PMID: 9299301]
  8. Langmuir. 2015 Feb 3;31(4):1336-43 [PMID: 25560633]
  9. Adv Protein Chem Struct Biol. 2011;85:183-215 [PMID: 21920324]
  10. Biophys J. 2007 Mar 1;92(5):1457-70 [PMID: 17142268]
  11. J Chem Theory Comput. 2013 Jul 9;9(7):3201-9 [PMID: 26583997]
  12. J Phys Chem B. 2016 Jul 7;120(26):6337-51 [PMID: 27096611]
  13. J Comput Aided Mol Des. 2012 Jan;26(1):15-26 [PMID: 22183577]
  14. Orig Life Evol Biosph. 1995 Jun;25(1-3):21-46 [PMID: 11536672]
  15. J Am Chem Soc. 2008 Dec 31;130(52):17977-80 [PMID: 19053186]
  16. Interdiscip Sci. 2017 Sep;9(3):392-405 [PMID: 28478537]
  17. Orig Life Evol Biosph. 2005 Apr;35(2):111-33 [PMID: 16010993]
  18. Phys Chem Chem Phys. 2016 Jul 28;18(28):19426-32 [PMID: 27378100]
  19. Adv Appl Bioinform Chem. 2015 Nov 19;8:37-47 [PMID: 26604800]
  20. Langmuir. 2007 Jun 5;23(12):6588-97 [PMID: 17477551]
  21. Nature. 2002 Nov 7;420(6911):102-6 [PMID: 12422224]
  22. J Mol Biol. 1976 May 15;103(2):227-49 [PMID: 985660]
  23. Langmuir. 2019 Feb 19;35(7):2780-2791 [PMID: 30681341]
  24. Orig Life Evol Biosph. 2004 Feb;34(1-2):181-94 [PMID: 14979655]
  25. EMBO Rep. 2000 Sep;1(3):217-22 [PMID: 11256602]
  26. Curr Drug Metab. 2011 Jul;12(6):533-48 [PMID: 21486213]
  27. Angew Chem Int Ed Engl. 2008;47(44):8424-8 [PMID: 18780409]
  28. Nature. 1977 Jun 16;267(5612):585-90 [PMID: 301613]
  29. Proc Natl Acad Sci U S A. 1993 Apr 15;90(8):3715-9 [PMID: 8475121]
  30. Science. 1988 Apr 1;240(4848):47-52 [PMID: 3281255]
  31. J Mol Biol. 2014 Jan 9;426(1):1-3 [PMID: 24184197]
  32. Astrobiology. 2009 Dec;9(10):979-87 [PMID: 20041750]
  33. Chem Rev. 2014 Jan 8;114(1):285-366 [PMID: 24171674]
  34. Crit Rev Biochem Mol Biol. 2018 Apr;53(2):192-207 [PMID: 29457544]
  35. Life (Basel). 2019 Jan 24;9(1): [PMID: 30678368]
  36. Langmuir. 2017 Sep 26;33(38):9934-9943 [PMID: 28836794]
  37. Angew Chem Int Ed Engl. 2008;47(33):6128-36 [PMID: 18613152]
  38. PLoS One. 2012;7(1):e29377 [PMID: 22235290]
  39. Adv Protein Chem Struct Biol. 2014;94:269-313 [PMID: 24629189]
  40. Chem Soc Rev. 2017 May 9;46(9):2543-2554 [PMID: 28418049]
  41. J Chem Theory Comput. 2011 Dec 13;7(12):4135-45 [PMID: 26598358]
  42. Science. 1989 Feb 3;243(4891):636-8 [PMID: 2916118]
  43. J Colloid Interface Sci. 2017 May 15;494:47-53 [PMID: 28135627]
  44. Curr Opin Struct Biol. 2014 Feb;24:98-105 [PMID: 24463371]
  45. Biochim Biophys Acta. 2010 Jul;1798(7):1338-47 [PMID: 20044978]
  46. Drug Discov Today. 2017 Feb;22(2):249-269 [PMID: 27890821]
  47. J Phys Chem B. 2012 Oct 25;116(42):12677-83 [PMID: 23025534]
  48. Phys Chem Chem Phys. 2016 Apr 28;18(16):11357-61 [PMID: 27056091]
  49. Astrobiology. 2019 Oct;19(10):1263-1278 [PMID: 31328961]
  50. J Chem Theory Comput. 2018 Nov 13;14(11):5459-5475 [PMID: 30240203]
  51. J Phys Chem B. 2014 Apr 3;118(13):3593-604 [PMID: 24533791]
  52. Angew Chem Int Ed Engl. 2015 Jan 12;54(3):833-7 [PMID: 25430978]
  53. J Colloid Interface Sci. 2019 Mar 1;537:269-279 [PMID: 30448648]
  54. Langmuir. 2008 Oct 7;24(19):10771-5 [PMID: 18729337]
  55. Orig Life Evol Biosph. 2001 Feb-Apr;31(1-2):119-45 [PMID: 11296516]
  56. J Chem Theory Comput. 2012 May 8;8(5):1556-69 [PMID: 26593649]
  57. Proc Natl Acad Sci U S A. 2014 May 27;111(21):7665-70 [PMID: 24753580]
  58. Nat Commun. 2014 Sep 02;5:4607 [PMID: 25178358]
  59. Polymer (Guildf). 2017 Oct 16;128:211-217 [PMID: 33149370]
  60. J Chem Phys. 2017 Oct 21;147(15):152702 [PMID: 29055344]
  61. J Org Chem. 2017 Jun 16;82(12):5997-6005 [PMID: 28467841]
  62. Curr Pharm Des. 2016;22(34):5249-5256 [PMID: 27174810]
  63. J Phys Chem B. 2017 Jun 15;121(23):5794-5809 [PMID: 28534622]
  64. J Theor Biol. 1986 Mar 7;119(1):1-24 [PMID: 3713221]
  65. J R Soc Interface. 2018 Jul;15(144): [PMID: 30045888]
  66. Phys Biol. 2009 Jul 01;6(2):025006 [PMID: 19571367]
  67. Curr Opin Pharmacol. 2010 Dec;10(6):745-52 [PMID: 20934381]
  68. J Chem Phys. 2016 Jan 21;144(3):034903 [PMID: 26801043]
  69. J Theor Biol. 2014 Sep 21;357:26-34 [PMID: 24831416]
  70. Biosystems. 1980;12(3-4):133-45 [PMID: 7397320]
  71. J Mol Model. 2014 Oct;20(10):2469 [PMID: 25300995]
  72. J Chem Phys. 2007 Jun 28;126(24):244703 [PMID: 17614573]
  73. Phys Rev Lett. 2010 Jul 30;105(5):058102 [PMID: 20867955]

Grants

  1. 711473/Minerva Foundation

Word Cloud

Created with Highcharts 10.0.0molecularGARDdynamicschemistrycompositionalSystemsoriginlifebasedmodelreplicationlipidworldlife-likeentitiesassembliesinteractionsmicellarfissionsystemskeycomponentresearchinvokingmodelslife'sinceptionevolvingnetworksOnegradedautocatalysisdomainformalismembodiedscenariooffersrigorouscomputersimulationdefinedchemicalkineticsequationssuggestsfirstpre-RNAhomeostatically-growingamphiphilesundergoingmutationswellrudimentaryselectionevolutionRecentprogressprovidedexperimentaltoolstudycomplexbiologicalphenomenaproteinfoldingligand-receptorformationgrowthdetaileddefinitioninter-molecularcatalyticmakehighlycompatibleanalysespresentroadmapsimulatingGARD'skineticthermodynamicbehaviorusingvariousmethodologiesreviewdifferentapproachestestingvalidityfollowingaccretioneventsexaminingchangestimeNear-futurecomputationaladvancesprovideempiricaldelineationsystemcomplexificationsimplenon-covalenttowardsprotocellularcovalentunderliesmetabolismgeneticencodingProtobioticChemistryAnalyzedMolecularDynamicsgardmicelleprotobiology

Similar Articles

Cited By (9)