Unanchored ubiquitin chains do not lead to marked alterations in gene expression in .

Jessica R Blount, Danielle N Meyer, Camille Akemann, Sean L Johnson, Katherine Gurdziel, Tracie R Baker, Sokol V Todi
Author Information
  1. Jessica R Blount: Department of Pharmacology, Wayne State University School of Medicine, Detroit, MI 48201, USA.
  2. Danielle N Meyer: Department of Pharmacology, Wayne State University School of Medicine, Detroit, MI 48201, USA.
  3. Camille Akemann: Department of Pharmacology, Wayne State University School of Medicine, Detroit, MI 48201, USA.
  4. Sean L Johnson: Department of Pharmacology, Wayne State University School of Medicine, Detroit, MI 48201, USA.
  5. Katherine Gurdziel: Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI 48201, USA.
  6. Tracie R Baker: Department of Pharmacology, Wayne State University School of Medicine, Detroit, MI 48201, USA tracie.baker@wayne.edu stodi@wayne.edu.
  7. Sokol V Todi: Department of Pharmacology, Wayne State University School of Medicine, Detroit, MI 48201, USA tracie.baker@wayne.edu stodi@wayne.edu. ORCID

Abstract

The small protein modifier ubiquitin regulates various aspects of cellular biology through its chemical conjugation onto proteins. Ubiquitination of proteins presents itself in numerous iterations, from a single mono-ubiquitination event to chains of poly-ubiquitin. Ubiquitin chains can be attached onto other proteins or can exist as unanchored species, i.e. free from another protein. Unanchored ubiquitin chains are thought to be deleterious to the cell and rapidly disassembled into mono-ubiquitin. We recently examined the toxicity and utilization of unanchored poly-ubiquitin in We found that free poly-ubiquitin species are largely innocuous to flies and that free poly-ubiquitin can be controlled by being degraded by the proteasome or by being conjugated onto another protein as a single unit. Here, to explore whether an organismal defense is mounted against unanchored chains, we conducted RNA-Seq analyses to examine the transcriptomic impact of free poly-ubiquitin in the fly. We found ∼90 transcripts whose expression is altered in the presence of different types of unanchored poly-ubiquitin. The set of genes identified was essentially devoid of ubiquitin-, proteasome-, or autophagy-related components. The seeming absence of a large and multipronged response to unanchored poly-ubiquitin supports the conclusion that these species need not be toxic and underscores the need to re-examine the role of free ubiquitin chains in the cell.

Keywords

References

  1. EMBO J. 2000 Jan 4;19(1):94-102 [PMID: 10619848]
  2. Plant J. 2001 Sep;27(5):393-405 [PMID: 11576424]
  3. J Biol Chem. 2003 Dec 5;278(49):48928-34 [PMID: 14519762]
  4. Biochim Biophys Acta. 2004 Nov 29;1695(1-3):189-207 [PMID: 15571815]
  5. Genetics. 2004 Nov;168(3):1337-52 [PMID: 15579689]
  6. Curr Biol. 2005 May 10;15(9):862-8 [PMID: 15886106]
  7. Curr Biol. 2005 Dec 20;15(24):2208-21 [PMID: 16360683]
  8. Cell Motil Cytoskeleton. 2006 Oct;63(10):604-22 [PMID: 16917818]
  9. Mol Cell Biol. 2007 Jun;27(12):4578-88 [PMID: 17438142]
  10. Genome Biol. 2007;8(9):R183 [PMID: 17784955]
  11. BMC Bioinformatics. 2007 Nov 02;8:426 [PMID: 17980028]
  12. PLoS One. 2008 May 07;3(5):e2115 [PMID: 18461180]
  13. J Biol Chem. 2008 Jul 11;283(28):19581-92 [PMID: 18482987]
  14. Nucleic Acids Res. 1991 Mar 11;19(5):1035-40 [PMID: 1850507]
  15. Nucleic Acids Res. 2009 Jan;37(1):1-13 [PMID: 19033363]
  16. J Biol Chem. 2009 Feb 20;284(8):5030-41 [PMID: 19098288]
  17. Nat Protoc. 2009;4(1):44-57 [PMID: 19131956]
  18. Chem Rev. 2009 Apr;109(4):1495-508 [PMID: 19243136]
  19. Annu Rev Biochem. 2009;78:363-97 [PMID: 19489724]
  20. Nat Rev Mol Cell Biol. 2009 Aug;10(8):550-63 [PMID: 19626045]
  21. Bioinformatics. 2010 Jan 1;26(1):139-40 [PMID: 19910308]
  22. BMC Bioinformatics. 2010 Feb 18;11:94 [PMID: 20167110]
  23. Dev Biol. 2010 Sep 15;345(2):117-32 [PMID: 20599890]
  24. Mol Cell. 2011 Aug 19;43(4):599-612 [PMID: 21855799]
  25. Mol Cell. 2011 Nov 18;44(4):572-84 [PMID: 22099305]
  26. Biochem J. 2012 Jun 15;444(3):611-7 [PMID: 22497224]
  27. Annu Rev Biochem. 2012;81:203-29 [PMID: 22524316]
  28. PLoS One. 2012;7(8):e43112 [PMID: 22937016]
  29. Bioinformatics. 2013 Jan 1;29(1):15-21 [PMID: 23104886]
  30. PLoS One. 2012;7(12):e50249 [PMID: 23236365]
  31. PLoS One. 2013;8(4):e60788 [PMID: 23577159]
  32. Cell. 2013 Jun 6;153(6):1312-26 [PMID: 23746843]
  33. Physiol Rev. 2013 Jul;93(3):1289-315 [PMID: 23899565]
  34. Proc Natl Acad Sci U S A. 2013 Sep 17;110(38):15247-52 [PMID: 23986494]
  35. Mol Cell. 2013 Sep 26;51(6):819-28 [PMID: 24035499]
  36. PLoS One. 2014 Jan 24;9(1):e86051 [PMID: 24475070]
  37. PLoS One. 2014 Feb 25;9(2):e89158 [PMID: 24586560]
  38. Mol Cell Biol. 1988 Nov;8(11):4727-35 [PMID: 2463465]
  39. EMBO J. 2014 Mar 18;33(6):536-9 [PMID: 24652836]
  40. Nature. 2014 Aug 28;512(7515):393-9 [PMID: 24670639]
  41. J Immunol. 2014 Apr 15;192(8):3455-62 [PMID: 24706930]
  42. Biochem Biophys Res Commun. 2014 Sep 26;452(3):369-75 [PMID: 25152394]
  43. Neuron. 2014 Sep 3;83(5):1144-58 [PMID: 25189210]
  44. Front Mol Neurosci. 2014 Aug 19;7:72 [PMID: 25191222]
  45. Bioinformatics. 2015 Jan 15;31(2):166-9 [PMID: 25260700]
  46. Nature. 1989 Mar 30;338(6214):438-40 [PMID: 2538756]
  47. J Biol Chem. 1985 Jun 25;260(12):7609-13 [PMID: 2581967]
  48. Hum Mol Genet. 2015 Aug 1;24(15):4385-96 [PMID: 25954029]
  49. BMC Genomics. 2015 Jul 11;16:519 [PMID: 26162375]
  50. BMC Genomics. 2015 Jul 25;16:548 [PMID: 26208977]
  51. Sci Rep. 2015 Aug 03;5:12836 [PMID: 26235645]
  52. FEBS J. 2016 Jan;283(1):39-53 [PMID: 26503766]
  53. Data Brief. 2015 Sep 05;5:134-7 [PMID: 26509186]
  54. Fly (Austin). 2015;9(2):86-90 [PMID: 26647059]
  55. BMC Genomics. 2016 Jan 13;17:50 [PMID: 26758761]
  56. Epigenetics Chromatin. 2016 Feb 03;9:4 [PMID: 26848313]
  57. J Biol Chem. 2016 Apr 22;291(17):9161-72 [PMID: 26917723]
  58. Cell Res. 2016 Apr;26(4):399-422 [PMID: 27012465]
  59. Nature. 2016 Apr 21;532(7599):398-401 [PMID: 27074503]
  60. Nat Cell Biol. 2016 May 27;18(6):579-86 [PMID: 27230526]
  61. Sci Rep. 2016 Jun 30;6:28999 [PMID: 27357258]
  62. Cell. 2016 Aug 25;166(5):1215-1230.e20 [PMID: 27523608]
  63. Brain. 2016 Nov 1;139(11):2891-2908 [PMID: 27645800]
  64. EMBO Rep. 2016 Nov;17(11):1624-1640 [PMID: 27702987]
  65. Nucleic Acids Res. 2017 Jan 4;45(D1):D663-D671 [PMID: 27799470]
  66. Biol Open. 2016 Dec 15;5(12):1770-1775 [PMID: 27979829]
  67. Hum Mol Genet. 2017 Apr 15;26(8):1419-1431 [PMID: 28158474]
  68. Brain Res Bull. 2017 Jun;132:222-231 [PMID: 28625786]
  69. Cell. 2017 Nov 2;171(4):918-933.e20 [PMID: 29033132]
  70. Sci Rep. 2018 May 31;8(1):8513 [PMID: 29855490]
  71. Nature. 1984 Dec 13-19;312(5995):663-6 [PMID: 6095120]
  72. Methods Cell Biol. 1994;44:635-54 [PMID: 7707973]
  73. Insect Biochem Mol Biol. 1994 Feb;24(2):191-201 [PMID: 8111427]
  74. Mol Gen Genet. 1994 Jan;242(2):152-62 [PMID: 8159165]
  75. Development. 1993 Jun;118(2):401-15 [PMID: 8223268]
  76. J Biol Chem. 1997 Sep 19;272(38):23712-21 [PMID: 9295315]
  77. EMBO J. 1997 Aug 15;16(16):4826-38 [PMID: 9305625]
  78. Biochemistry. 1998 Mar 10;37(10):3358-68 [PMID: 9521656]

Grants

  1. R01 NS086778/NINDS NIH HHS
  2. K01 OD010462/NIH HHS
  3. F31 ES030278/NIEHS NIH HHS
  4. P30 CA022453/NCI NIH HHS
  5. P30 ES020957/NIEHS NIH HHS

Word Cloud

Created with Highcharts 10.0.0poly-ubiquitinchainsunanchoredfreeubiquitinproteinontoproteinscanspeciessingleUbiquitinanotherUnanchoredcellfoundRNA-SeqexpressionneedsmallmodifierregulatesvariousaspectscellularbiologychemicalconjugationUbiquitinationpresentsnumerousiterationsmono-ubiquitinationeventattachedexistiethoughtdeleteriousrapidlydisassembledmono-ubiquitinrecentlyexaminedtoxicityutilizationlargelyinnocuousfliescontrolleddegradedproteasomeconjugatedunitexplorewhetherorganismaldefensemountedconductedanalysesexaminetranscriptomicimpactfly∼90transcriptswhosealteredpresencedifferenttypessetgenesidentifiedessentiallydevoidubiquitin-proteasome-autophagy-relatedcomponentsseemingabsencelargemultiprongedresponsesupportsconclusiontoxicunderscoresre-examineroleleadmarkedalterationsgeneDAVIDDrosophilamelanogasterPathwayAnalysisProteolysis

Similar Articles

Cited By