Modeling Dependence Structures for Response Times in a Bayesian Framework.

Konrad Klotzke, Jean-Paul Fox
Author Information
  1. Konrad Klotzke: University of Twente, P.O. Box 217, 7500 AE , Enschede, The Netherlands. k.klotzke@utwente.nl. ORCID
  2. Jean-Paul Fox: University of Twente, P.O. Box 217, 7500 AE , Enschede, The Netherlands.

Abstract

A multivariate generalization of the log-normal model for response times is proposed within an innovative Bayesian modeling framework. A novel Bayesian Covariance Structure Model (BCSM) is proposed, where the inclusion of random-effect variables is avoided, while their implied dependencies are modeled directly through an additive covariance structure. This makes it possible to jointly model complex dependencies due to for instance the test format (e.g., testlets, complex constructs), time limits, or features of digitally based assessments. A class of conjugate priors is proposed for the random-effect variance parameters in the BCSM framework. They give support to testing the presence of random effects, reduce boundary effects by allowing non-positive (co)variance parameters, and support accurate estimation even for very small true variance parameters. The conjugate priors under the BCSM lead to efficient posterior computation. Bayes factors and the Bayesian Information Criterion are discussed for the purpose of model selection in the new framework. In two simulation studies, a satisfying performance of the MCMC algorithm and of the Bayes factor is shown. In comparison with parameter expansion through a half-Cauchy prior, estimates of variance parameters close to zero show no bias and undercoverage of credible intervals is avoided. An empirical example showcases the utility of the BCSM for response times to test the influence of item presentation formats on the test performance of students in a Latin square experimental design.

Keywords

References

  1. Psychometrika. 2009 Mar;74(1):21-48 [PMID: 20037635]
  2. Educ Psychol Meas. 2018 Jun;78(3):384-408 [PMID: 30140099]
  3. Br J Math Stat Psychol. 2015 May;68(2):197-219 [PMID: 25109494]
  4. Multivariate Behav Res. 2016 Sep-Oct;51(5):606-626 [PMID: 27712114]
  5. Psychometrika. 2017 Dec;82(4):979-1006 [PMID: 28852944]
  6. Br J Math Stat Psychol. 2010 Nov;63(Pt 3):603-26 [PMID: 20109271]
  7. J R Stat Soc Ser A Stat Soc. 2009 Jun;172(3):579-598 [PMID: 19649268]
  8. Br J Math Stat Psychol. 2015 Nov;68(3):456-77 [PMID: 25873487]
  9. Psychol Methods. 2005 Dec;10(4):477-93 [PMID: 16393001]
  10. J Multivar Anal. 2014 Nov 1;132:160-170 [PMID: 25382878]
  11. Psychol Methods. 2009 Mar;14(1):54-75 [PMID: 19271848]
  12. Cogn Psychol. 2010 May;60(3):158-89 [PMID: 20064637]
  13. Br J Math Stat Psychol. 2014 May;67(2):304-27 [PMID: 23937392]
  14. Multivariate Behav Res. 2015;50(1):56-74 [PMID: 26609743]
  15. J Adv Res. 2016 Jan;7(1):59-68 [PMID: 26843971]
  16. Educ Psychol Meas. 2016 Feb;76(1):64-87 [PMID: 29795857]

MeSH Term

Academic Performance
Algorithms
Bayes Theorem
Dependency, Psychological
Humans
Psychometrics
Reaction Time
Research Design
Simulation Training
Students
Time Factors

Word Cloud

Created with Highcharts 10.0.0BayesianBCSMvarianceparametersmodelresponseproposedmodelingframeworktesttimesrandom-effectavoideddependenciescomplextestletstimeconjugatepriorssupporteffectsBayesperformancepriormultivariategeneralizationlog-normalwithininnovativenovelCovarianceStructureModelinclusionvariablesimpliedmodeleddirectlyadditivecovariancestructuremakespossiblejointlydueinstanceformategconstructslimitsfeaturesdigitallybasedassessmentsclassgivetestingpresencerandomreduceboundaryallowingnon-positivecoaccurateestimationevensmalltrueleadefficientposteriorcomputationfactorsInformationCriteriondiscussedpurposeselectionnewtwosimulationstudiessatisfyingMCMCalgorithmfactorshowncomparisonparameterexpansionhalf-CauchyestimatesclosezeroshowbiasundercoveragecredibleintervalsempiricalexampleshowcasesutilityinfluenceitempresentationformatsstudentsLatinsquareexperimentaldesignModelingDependenceStructuresResponseTimesFrameworkmarginalconditionalindependencelocaldependencenon-informativedistribution

Similar Articles

Cited By