Selection of antimicrobial frog peptides and temporin-1DRa analogues for treatment of bacterial infections based on their cytotoxicity and differential activity against pathogens.

Rogier A Gaiser, Jaione Ayerra Mangado, Milena Mechkarska, Wendy E Kaman, Peter van Baarlen, J Michael Conlon, Jerry M Wells
Author Information
  1. Rogier A Gaiser: Host-Microbe Interactomics Group, Animal Sciences Department, Wageningen University, Wageningen, The Netherlands. ORCID
  2. Jaione Ayerra Mangado: Host-Microbe Interactomics Group, Animal Sciences Department, Wageningen University, Wageningen, The Netherlands.
  3. Milena Mechkarska: Department of Biochemistry, College of Medicine and Health Sciences, United Arab Emirates University, Al-Ain, United Arab Emirates.
  4. Wendy E Kaman: Department of Medical Microbiology and Infectious Diseases, Erasmus University Medical Centre Rotterdam (EMC), Rotterdam, The Netherlands.
  5. Peter van Baarlen: Host-Microbe Interactomics Group, Animal Sciences Department, Wageningen University, Wageningen, The Netherlands.
  6. J Michael Conlon: Department of Biochemistry, College of Medicine and Health Sciences, United Arab Emirates University, Al-Ain, United Arab Emirates.
  7. Jerry M Wells: Host-Microbe Interactomics Group, Animal Sciences Department, Wageningen University, Wageningen, The Netherlands.

Abstract

Cationic, amphipathic, α-helical host-defense peptides (HDPs) that are naturally secreted by certain species of frogs (Anura) possess potent broad-spectrum antimicrobial activity and show therapeutic potential as alternatives to treat infections by multidrug-resistant pathogens. Fourteen amphibian skin peptides and twelve analogues of temporin-1DRa were studied for their antimicrobial activities against clinically relevant human or animal skin infection-associated pathogens. For comparison, antimicrobial potencies of frog skin peptides against a range of probiotic lactobacilli were determined. We used the VITEK 2 system to define a profile of antibiotic susceptibility for the bacterial panel. The minimal inhibitory concentration (MIC) values of the naturally occurring temporin-1DRa, CPF-AM1, alyteserin-1c, hymenochirin-2B, and hymenochirin-4B for pathogenic bacteria were threefold to ninefold lower than the values for the tested probiotic strains. Similarly, temporin-1DRa and its [Lys ], [Lys ], and [Aib ] analogues showed fivefold to 6.5-fold greater potency against the pathogens. In the case of PGLa-AM1, XT-7, temporin-1DRa and its [D-Lys ] and [Aib ] analogues, no apoptosis or necrosis was detected in human peripheral blood mononuclear cells at concentrations below or above the MIC. Given the differential activity against commensal bacteria and pathogens, some of these peptides are promising candidates for further development into therapeutics for topical treatment of skin infections.

Keywords

References

  1. Biochem J. 1987 Apr 1;243(1):113-20 [PMID: 3606567]
  2. J Biol Chem. 1998 Jul 3;273(27):16792-7 [PMID: 9642237]
  3. Vet Dermatol. 2012 Aug;23(4):253-66, e51-2 [PMID: 22515504]
  4. Science. 2009 May 29;324(5931):1190-2 [PMID: 19478181]
  5. Peptides. 2012 Jun;35(2):269-75 [PMID: 22497805]
  6. Curr Pharm Des. 2012;18(6):807-19 [PMID: 22236127]
  7. Peptides. 2015 Jan;63:96-117 [PMID: 25464160]
  8. Pharmaceuticals (Basel). 2014 Jan 15;7(1):58-77 [PMID: 24434793]
  9. Peptides. 2007 Oct;28(10):2075-80 [PMID: 17767978]
  10. Proc Natl Acad Sci U S A. 1987 Aug;84(15):5449-53 [PMID: 3299384]
  11. Nat Struct Biol. 1994 Jun;1(6):399-409 [PMID: 7664054]
  12. Biochemistry. 1990 Jul 24;29(29):6747-56 [PMID: 2204420]
  13. Nanomedicine (Lond). 2015 May;10(10):1643-61 [PMID: 26008197]
  14. Nat Rev Immunol. 2016 May 27;16(6):353-66 [PMID: 27231051]
  15. Infect Immun. 1992 Feb;60(2):550-6 [PMID: 1730489]
  16. Peptides. 2009 Jun;30(6):1069-73 [PMID: 19463738]
  17. Cell Tissue Res. 2011 Jan;343(1):201-12 [PMID: 20640445]
  18. J Clin Microbiol. 2000 Jun;38(6):2108-11 [PMID: 10834961]
  19. Chem Biol Drug Des. 2020 Oct;96(4):1103-1113 [PMID: 31102497]
  20. J Mol Biol. 1982 May 5;157(1):105-32 [PMID: 7108955]
  21. Nucleic Acids Res. 2016 Jan 4;44(D1):D1087-93 [PMID: 26602694]
  22. Exp Dermatol. 2016 Mar;25(3):167-73 [PMID: 26738772]
  23. BMC Microbiol. 2010 Nov 16;10:293 [PMID: 21080958]
  24. Surg Infect (Larchmt). 2010 Feb;11(1):49-57 [PMID: 19788383]
  25. Biotechniques. 2003 Feb;34(2):374-8 [PMID: 12613259]
  26. Methods. 2007 Aug;42(4):349-57 [PMID: 17560323]
  27. J Clin Microbiol. 1998 Jul;36(7):1948-52 [PMID: 9650942]
  28. Peptides. 2010 Apr;31(4):548-54 [PMID: 20015460]
  29. Expert Opin Pharmacother. 2010 Apr;11(5):779-88 [PMID: 20210684]
  30. Comp Biochem Physiol Part D Genomics Proteomics. 2012 Sep;7(3):285-91 [PMID: 22687652]
  31. Cell Mol Life Sci. 2011 Jul;68(13):2161-76 [PMID: 21573784]
  32. Biochem Biophys Res Commun. 2001 Nov 9;288(4):1001-5 [PMID: 11689009]
  33. Biochim Biophys Acta. 2001 Nov 26;1550(1):81-9 [PMID: 11738090]
  34. Appl Environ Microbiol. 2016 Sep 16;82(19):5756-62 [PMID: 27422834]
  35. N Engl J Med. 2002 Oct 10;347(15):1151-60 [PMID: 12374875]
  36. Peptides. 2010 Jun;31(6):989-94 [PMID: 20226221]
  37. Cell Mol Life Sci. 2011 Jul;68(13):2303-15 [PMID: 21560068]
  38. Am J Infect Control. 2014 Oct;42(10):1062-6 [PMID: 25278394]
  39. Regul Pept. 2014 Nov;194-195:63-8 [PMID: 25447193]
  40. Peptides. 2006 Jun;27(6):1305-12 [PMID: 16307827]
  41. FEMS Immunol Med Microbiol. 2012 Aug;65(3):488-96 [PMID: 22540665]

MeSH Term

Amino Acid Sequence
Animals
Anti-Bacterial Agents
Antimicrobial Cationic Peptides
Anura
Bacterial Infections
Humans
Microbial Sensitivity Tests
Pore Forming Cytotoxic Proteins
Skin

Chemicals

Anti-Bacterial Agents
Antimicrobial Cationic Peptides
Pore Forming Cytotoxic Proteins
temporin

Word Cloud

Created with Highcharts 10.0.0peptidesantimicrobialpathogenstemporin-1DRa]skinanaloguesactivityinfectionsnaturallyhumanfrogprobioticbacterialMICvaluesbacteria[Lys[AibdifferentialtreatmentCationicamphipathicα-helicalhost-defenseHDPssecretedcertainspeciesfrogsAnurapossesspotentbroad-spectrumshowtherapeuticpotentialalternativestreatmultidrug-resistantFourteenamphibiantwelvestudiedactivitiesclinicallyrelevantanimalinfection-associatedcomparisonpotenciesrangelactobacillideterminedusedVITEK2systemdefineprofileantibioticsusceptibilitypanelminimalinhibitoryconcentrationoccurringCPF-AM1alyteserin-1chymenochirin-2Bhymenochirin-4BpathogenicthreefoldninefoldlowertestedstrainsSimilarlyshowedfivefold65-foldgreaterpotencycasePGLa-AM1XT-7[D-LysapoptosisnecrosisdetectedperipheralbloodmononuclearcellsconcentrationsGivencommensalpromisingcandidatesdevelopmenttherapeuticstopicalSelectionbasedcytotoxicityHDPpeptidebiologicalscreening

Similar Articles

Cited By