Glycyrrhizic acid ameliorates LPS-induced acute lung injury by regulating autophagy through the PI3K/AKT/mTOR pathway.

Lihua Qu, Chao Chen, Wei He, Yangye Chen, Yi Li, Yi Wen, Sichun Zhou, Yiqun Jiang, Xiaoping Yang, Ran Zhang, Li Shen
Author Information
  1. Lihua Qu: Department of Physiology, Hunan Normal University School of Medicine Changsha 410013, China.
  2. Chao Chen: Department of Pathology and Key Laboratory of Cancer Stem Cells and Translational Medicine, Hunan Normal University School of Medicine Changsha 410013, China.
  3. Wei He: Department of Ultrasonography, The Third Xiangya Hospital of Central South University Changsha 410013, China.
  4. Yangye Chen: Department of Physiology, Hunan Normal University School of Medicine Changsha 410013, China.
  5. Yi Li: Department of Physiology, Hunan Normal University School of Medicine Changsha 410013, China.
  6. Yi Wen: Department of Pharmacy and Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan Province, Hunan Normal University School of Medicine Changsha 410013, China.
  7. Sichun Zhou: Department of Pharmacy and Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan Province, Hunan Normal University School of Medicine Changsha 410013, China.
  8. Yiqun Jiang: Department of Physiology, Hunan Normal University School of Medicine Changsha 410013, China.
  9. Xiaoping Yang: Department of Pharmacy and Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan Province, Hunan Normal University School of Medicine Changsha 410013, China.
  10. Ran Zhang: Department of Immunology, Hunan Normal University School of Medicine Changsha 410013, China.
  11. Li Shen: Department of Physiology, Hunan Normal University School of Medicine Changsha 410013, China.

Abstract

Acute lung injury (ALI) is a major pathological issue characterized by serious inflammatory response, and a major clinically critical illness with high morbidity and mortality. Glycyrrhizic acid (GA) is a major bioactive constituent isolated from traditional Chinese herb licorice, which has been reported to have positive effects on inflammation. Nevertheless, the effects of GA on lipopolysaccharide (LPS)-treated ALI in mice have not been reported. The purpose of our study is to investigate the inhibitory effects of GA on ALI treated by LPS and to elucidate its possible mechanisms. We found that GA significantly attenuated lung injury and decreased the production of inflammatory factors TNF-α, IL-1β, and HMGB1 with LPS treatment. GA induced autophagy which was showed by enhanced number of autophagosomes through upregulating the protein levels of LC3-II/I and Beclin-1 and downregulating SQSTM1/P62. Moreover, pre-treatment of 3-Methyladenine (3-MA), an autophagy inhibitor, reversed the inhibiting effects of GA on the secretion of inflammatory factors in ALI. The PI3K/AKT/mTOR pathway was associated with GA-induced autophagy under ALI induced by LPS. In conclusion, this study indicated that GA inhibited the production of inflammatory factors in LPS-induced ALI by regulating the PI3K/AKT/mTOR pathway related autophagy, which may provide a novel therapeutic perspective of GA in ameliorating ALI.

Keywords

References

  1. Thorax. 2002 May;57(5):452-8 [PMID: 11978926]
  2. Nature. 2008 Feb 28;451(7182):1069-75 [PMID: 18305538]
  3. Pharmacol Res. 2008 Jul;58(1):22-31 [PMID: 18590825]
  4. Nature. 2008 Nov 13;456(7219):264-8 [PMID: 18849965]
  5. Curr Opin Cell Biol. 2010 Apr;22(2):124-31 [PMID: 20034776]
  6. Trends Biochem Sci. 2011 Jan;36(1):30-8 [PMID: 20728362]
  7. Autophagy. 2010 Nov;6(8):1181-3 [PMID: 20861675]
  8. Autophagy. 2010 Nov;6(8):1209-11 [PMID: 20935509]
  9. Nature. 2011 Jan 13;469(7329):221-5 [PMID: 21124315]
  10. Nat Immunol. 2011 Mar;12(3):222-30 [PMID: 21151103]
  11. J Biol Chem. 2011 Mar 18;286(11):9587-97 [PMID: 21228274]
  12. Autophagy. 2011 May;7(5):541-3 [PMID: 21412049]
  13. Crit Care Clin. 2011 Apr;27(2):355-77 [PMID: 21440206]
  14. Cytokine. 2011 Nov;56(2):140-4 [PMID: 21889357]
  15. Am J Respir Cell Mol Biol. 2012 Apr;46(4):507-14 [PMID: 22095627]
  16. Autophagy. 2012 Mar;8(3):426-8 [PMID: 22302001]
  17. Crit Care. 2012 Dec 12;16(2):205 [PMID: 22424108]
  18. Chest. 2012 Aug;142(2):492-505 [PMID: 22871759]
  19. EMBO Rep. 2013 Feb;14(2):143-51 [PMID: 23337627]
  20. Crit Care Med. 2013 Aug;41(8):1929-37 [PMID: 23782966]
  21. J Surg Res. 2014 Jan;186(1):310-7 [PMID: 24124976]
  22. Pharmacol Ther. 2014 Mar;141(3):347-57 [PMID: 24220159]
  23. J Agric Food Chem. 2014 Jan 22;62(3):618-25 [PMID: 24386942]
  24. Autophagy. 2014 Oct 1;10(10):1761-75 [PMID: 25126727]
  25. J Transl Med. 2015 Mar 15;13:92 [PMID: 25884210]
  26. Antimicrob Agents Chemother. 2015 Jul;59(7):4020-5 [PMID: 25896709]
  27. Molecules. 2015 Jul 20;20(7):13041-54 [PMID: 26205049]
  28. Nat Immunol. 2015 Oct;16(10):1014-24 [PMID: 26382870]
  29. J Histochem Cytochem. 2016 Feb;64(2):125-37 [PMID: 26385569]
  30. Int J Biol Sci. 2016 Jun 07;12(7):884-97 [PMID: 27313501]
  31. Radiol Clin North Am. 2016 Nov;54(6):1119-1132 [PMID: 27719979]
  32. Pharmacol Rep. 2017 Feb;69(1):81-89 [PMID: 27914293]
  33. Toxicol Lett. 2017 Apr 5;271:26-37 [PMID: 28245985]
  34. J Cell Physiol. 2018 Jan;233(1):688-698 [PMID: 28328069]
  35. PLoS Pathog. 2017 Jun 16;13(6):e1006436 [PMID: 28622363]
  36. Cancer Med. 2017 Aug;6(8):1941-1951 [PMID: 28675698]
  37. Biomed Pharmacother. 2017 Nov;95:670-678 [PMID: 28886526]
  38. Autophagy. 2018;14(2):207-215 [PMID: 28933638]
  39. Wiley Interdiscip Rev RNA. 2018 Jan;9(1): [PMID: 29071794]
  40. Toxicol Lett. 2018 Sep 1;293:120-126 [PMID: 29104014]
  41. Oncol Rep. 2018 Feb;39(2):703-710 [PMID: 29207188]
  42. Mol Immunol. 2018 Feb;94:7-17 [PMID: 29241031]
  43. Biochem Pharmacol. 2018 Jun;152:45-59 [PMID: 29551587]
  44. Nat Rev Mol Cell Biol. 2018 Jun;19(6):349-364 [PMID: 29618831]
  45. Autophagy. 2018;14(10):1677-1692 [PMID: 29965781]
  46. J Immunol. 2018 Sep 1;201(5):1500-1509 [PMID: 29997122]
  47. Inflammation. 2018 Oct;41(5):1690-1701 [PMID: 30003405]
  48. Cell Physiol Biochem. 2018;48(1):328-338 [PMID: 30016764]
  49. Mol Med Rep. 2018 Sep;18(3):3429-3436 [PMID: 30066879]
  50. Am J Physiol Lung Cell Mol Physiol. 2019 Jan 1;316(1):L255-L268 [PMID: 30382767]
  51. Crit Care. 2018 Nov 16;22(1):302 [PMID: 30445996]
  52. Stem Cell Res Ther. 2018 Nov 28;9(1):330 [PMID: 30486857]
  53. Crit Care Med. 1997 Nov;25(11):1888-97 [PMID: 9366775]

Word Cloud

Created with Highcharts 10.0.0GAALIautophagyLPSinflammatoryeffectslunginjurymajorGlycyrrhizicacidfactorsPI3K/AKT/mTORpathwayreportedinflammationstudyproductioninducedLPS-inducedregulatingAcutepathologicalissuecharacterizedseriousresponseclinicallycriticalillnesshighmorbiditymortalitybioactiveconstituentisolatedtraditionalChineseherblicoricepositiveNeverthelesslipopolysaccharide-treatedmicepurposeinvestigateinhibitorytreatedelucidatepossiblemechanismsfoundsignificantlyattenuateddecreasedTNF-αIL-1βHMGB1treatmentshowedenhancednumberautophagosomesupregulatingproteinlevelsLC3-II/IBeclin-1downregulatingSQSTM1/P62Moreoverpre-treatment3-Methyladenine3-MAinhibitorreversedinhibitingsecretionassociatedGA-inducedconclusionindicatedinhibitedrelatedmayprovidenoveltherapeuticperspectiveamelioratingamelioratesacute

Similar Articles

Cited By