Genetic and morphological identification of a recurrent Dicksonia tree fern hybrid in New Zealand.

Lara D Shepherd, Patrick J Brownsey, Chris Stowe, Claire Newell, Leon R Perrie
Author Information
  1. Lara D Shepherd: Museum of New Zealand Te Papa Tongarewa, Wellington, New Zealand. ORCID
  2. Patrick J Brownsey: Museum of New Zealand Te Papa Tongarewa, Wellington, New Zealand.
  3. Chris Stowe: Urtica Ecology, Riverton, New Zealand.
  4. Claire Newell: Korowai Ecology, Springfield, New Zealand.
  5. Leon R Perrie: Museum of New Zealand Te Papa Tongarewa, Wellington, New Zealand.

Abstract

Hybridization is common in many ferns and has been a significant factor in fern evolution and speciation. However, hybrids are rare between the approximately 30 species of Dicksonia tree ferns world-wide, and none are well documented. In this study we examine the relationship of a newly-discovered Dicksonia tree fern from Whirinaki, New Zealand, which does not fit the current taxonomy of the three species currently recognized in New Zealand. Our microsatellite genotyping and ddRAD-seq data indicate these plants are F1 hybrids that have formed multiple times between D. fibrosa and D. lanata subsp. lanata. The Whirinaki plants have intermediate morphology between D. fibrosa and D. lanata subsp. lanata and their malformed spores are consistent with a hybrid origin. The Whirinaki plants-Dicksonia fibrosa × D. lanata subsp. lanata-are an example of hybridization between distantly related fern lineages, with the two parent species estimated to have diverged 55-25 mya. Our chloroplast sequencing indicates asymmetric chloroplast inheritance in the Whirinaki morphology with D. lanata subsp. lanata always contributing the chloroplast genome.

References

  1. Mol Biol Evol. 1999 Jan;16(1):37-48 [PMID: 10331250]
  2. Springerplus. 2014 Aug 13;3:431 [PMID: 25152854]
  3. Mol Ecol. 2005 Jul;14(8):2611-20 [PMID: 15969739]
  4. Proc Biol Sci. 2005 Feb 22;272(1561):455-60 [PMID: 15734701]
  5. Am J Bot. 2007 Mar;94(3):275-88 [PMID: 21636401]
  6. Genetics. 2000 Jun;155(2):945-59 [PMID: 10835412]
  7. Mol Ecol. 2015 Jul;24(13):3223-31 [PMID: 25974103]
  8. Plant Methods. 2016 Aug 04;12:39 [PMID: 27493679]
  9. PLoS One. 2012;7(5):e37135 [PMID: 22675423]
  10. Mol Biol Evol. 2006 Feb;23(2):254-67 [PMID: 16221896]
  11. Mol Phylogenet Evol. 2008 Oct;49(1):240-8 [PMID: 18640280]
  12. Nucleic Acids Res. 2012 Aug;40(15):e115 [PMID: 22730293]
  13. Mol Biol Evol. 2004 Feb;21(2):255-65 [PMID: 14660700]
  14. J Plant Res. 2011 Mar;124(2):311-4 [PMID: 20927638]
  15. Mol Ecol Notes. 2007 Jul 1;7(4):574-578 [PMID: 18784791]
  16. Proc Natl Acad Sci U S A. 2009 Aug 18;106(33):13875-9 [PMID: 19667210]
  17. Am Nat. 2015 Mar;185(3):433-42 [PMID: 25674696]
  18. Bioinformatics. 2007 Jul 15;23(14):1801-6 [PMID: 17485429]
  19. Am J Bot. 1997 Aug;84(8):1120 [PMID: 21708667]
  20. BMC Plant Biol. 2013 May 01;13:74 [PMID: 23634934]
  21. New Phytol. 2015 Apr;206(2):785-95 [PMID: 25443156]

MeSH Term

Chloroplasts
Ferns
Genome, Chloroplast
Hybridization, Genetic
New Zealand

Word Cloud

Created with Highcharts 10.0.0lanataDfernWhirinakisubspspeciesDicksoniatreeNewZealandfibrosachloroplastfernshybridsplantsmorphologyhybridHybridizationcommonmanysignificantfactorevolutionspeciationHoweverrareapproximately30world-widenonewelldocumentedstudyexaminerelationshipnewly-discoveredfitcurrenttaxonomythreecurrentlyrecognizedmicrosatellitegenotypingddRAD-seqdataindicateF1formedmultipletimesintermediatemalformedsporesconsistentoriginplants-Dicksonia×lanata-areexamplehybridizationdistantlyrelatedlineagestwoparentestimateddiverged55-25myasequencingindicatesasymmetricinheritancealwayscontributinggenomeGeneticmorphologicalidentificationrecurrent

Similar Articles

Cited By