Bridging disciplines to advance elasmobranch conservation: applications of physiological ecology.

K Lyons, J S Bigman, D Kacev, C G Mull, A B Carlisle, J L Imhoff, J M Anderson, K C Weng, A S Galloway, E Cave, T R Gunn, C G Lowe, R W Brill, C N Bedore
Author Information
  1. K Lyons: Georgia Aquarium, Atlanta, GA, USA.
  2. J S Bigman: Simon Fraser University, Burnaby, Canada.
  3. D Kacev: Southwest Fisheries Science Center, La Jolla, CA, USA.
  4. C G Mull: Simon Fraser University, Burnaby, Canada.
  5. A B Carlisle: University of Delaware, DE, USA.
  6. J L Imhoff: Florida State University Coastal and Marine Laboratory, St. Teresa, FL, USA.
  7. J M Anderson: University of Hawai`i at Mānoa, Honolulu, HI, USA.
  8. K C Weng: Virginia Institute of Marine Science, Gloucester Point, VA, USA. ORCID
  9. A S Galloway: South Carolina Department of Natural Resources, SC, USA.
  10. E Cave: Florida Atlantic University, Boca Raton, FL, USA.
  11. T R Gunn: Georgia Southern University, Statesboro, GA USA.
  12. C G Lowe: California State University Long Beach, Long Beach, CA, USA.
  13. R W Brill: Virginia Institute of Marine Science, Gloucester Point, VA, USA.
  14. C N Bedore: Georgia Southern University, Statesboro, GA USA.

Abstract

A strength of physiological ecology is its incorporation of aspects of both species' ecology and physiology; this holistic approach is needed to address current and future anthropogenic stressors affecting elasmobranch fishes that range from overexploitation to the effects of climate change. For example, physiology is one of several key determinants of an organism's ecological niche (along with evolutionary constraints and ecological interactions). The fundamental role of physiology in niche determination led to the development of the field of physiological ecology. This approach considers physiological mechanisms in the context of the environment to understand mechanistic variations that beget ecological trends. Physiological ecology, as an integrative discipline, has recently experienced a resurgence with respect to conservation applications, largely in conjunction with technological advances that extended physiological work from the lab into the natural world. This is of critical importance for species such as elasmobranchs (sharks, skates and rays), which are an especially understudied and threatened group of vertebrates. In 2017, at the American Elasmobranch Society meeting in Austin, Texas, the symposium entitled `Applications of Physiological Ecology in Elasmobranch Research' provided a platform for researchers to showcase work in which ecological questions were examined through a physiological lens. Here, we highlight the research presented at this symposium, which emphasized the strength of linking physiological tools with ecological questions. We also demonstrate the applicability of using physiological ecology research as a method to approach conservation issues, and advocate for a more available framework whereby results are more easily accessible for their implementation into management practices.

Keywords

References

  1. J Exp Zool. 1999 Oct 1;284(5):485-91 [PMID: 10469985]
  2. J Neurosci. 2000 Nov 15;20(22):8586-95 [PMID: 11069967]
  3. Philos Trans R Soc Lond B Biol Sci. 2000 Sep 29;355(1401):1135-41 [PMID: 11079385]
  4. Nature. 2002 Jan 3;415(6867):35-6 [PMID: 11780105]
  5. J Exp Biol. 2002 Dec;205(Pt 23):3609-21 [PMID: 12409487]
  6. Evolution. 2004 Oct;58(10):2332-42 [PMID: 15562694]
  7. Annu Rev Physiol. 2005;67:177-201 [PMID: 15709956]
  8. Mar Pollut Bull. 2005 Aug;50(8):850-5 [PMID: 16115502]
  9. Science. 2005 Oct 7;310(5745):104-6 [PMID: 16210538]
  10. Nature. 2005 Oct 27;437(7063):1349-52 [PMID: 16251963]
  11. Brain Behav Evol. 2007;69(4):280-300 [PMID: 17314475]
  12. J Exp Biol. 2007 Apr;210(Pt 7):1194-203 [PMID: 17371918]
  13. Physiol Rev. 2007 Oct;87(4):1175-213 [PMID: 17928583]
  14. Mol Ecol. 2008 Jul;17(14):3337-51 [PMID: 18564083]
  15. J Comp Physiol B. 2009 Jan;179(1):1-56 [PMID: 18597096]
  16. Biol Rev Camb Philos Soc. 2009 Feb;84(1):91-111 [PMID: 19046398]
  17. Mar Pollut Bull. 2009 Feb;58(2):294-8 [PMID: 19084877]
  18. Ecol Lett. 2009 Apr;12(4):334-50 [PMID: 19292794]
  19. Proc Natl Acad Sci U S A. 2009 Aug 18;106(33):13865-9 [PMID: 19666614]
  20. Mar Environ Res. 2010 Feb;69(1):18-26 [PMID: 19726079]
  21. Brain Behav Evol. 2009;74(2):121-42 [PMID: 19729899]
  22. Proc Biol Sci. 2010 Mar 7;277(1682):679-88 [PMID: 19889703]
  23. Environ Sci Technol. 2009 Nov 15;43(22):8522-7 [PMID: 20028046]
  24. Environ Toxicol Chem. 2010 Apr;29(4):824-34 [PMID: 20821511]
  25. J Exp Biol. 2010 Oct 15;213(Pt 20):3449-56 [PMID: 20889825]
  26. Vis Neurosci. 2011 Jul;28(4):309-23 [PMID: 21156089]
  27. PLoS One. 2011 Jan 13;6(1):e16008 [PMID: 21249147]
  28. PLoS One. 2012;7(2):e30492 [PMID: 22355313]
  29. J Fish Biol. 2012 Apr;80(5):1449-84 [PMID: 22497393]
  30. J Fish Biol. 2012 Apr;80(5):1968-2023 [PMID: 22497414]
  31. Brain Behav Evol. 2012;80(2):108-26 [PMID: 22986827]
  32. Evolution. 2013 Feb;67(2):378-87 [PMID: 23356611]
  33. Physiol Biochem Zool. 2013 May-Jun;86(3):298-311 [PMID: 23629880]
  34. Mar Environ Res. 2013 Sep;90:27-38 [PMID: 23773783]
  35. Environ Sci Technol. 2013;47(21):12450-8 [PMID: 24073960]
  36. J Comp Physiol A Neuroethol Sens Neural Behav Physiol. 2013 Dec;199(12):1129-41 [PMID: 24078200]
  37. BMC Genomics. 2013 Oct 11;14:697 [PMID: 24112713]
  38. Evolution. 2014 Mar;68(3):743-59 [PMID: 24152239]
  39. Zoology (Jena). 2014 Apr;117(2):95-103 [PMID: 24290363]
  40. Brain Struct Funct. 2015 Mar;220(2):1127-43 [PMID: 24435575]
  41. Elife. 2014;3:e00590 [PMID: 24448405]
  42. Integr Zool. 2015 Jan;10(1):38-64 [PMID: 24919643]
  43. Glob Chang Biol. 2015 Apr;21(4):1454-62 [PMID: 25111824]
  44. Proc Biol Sci. 2014 Oct 22;281(1793):null [PMID: 25209942]
  45. Ecotoxicology. 2015 Apr;24(3):553-62 [PMID: 25527298]
  46. Brain Struct Funct. 2016 Apr;221(3):1321-35 [PMID: 25552316]
  47. PLoS One. 2015 Jan 30;10(1):e0116182 [PMID: 25635686]
  48. J Morphol. 2015 May;276(5):589-600 [PMID: 25703507]
  49. Proc Natl Acad Sci U S A. 2015 May 12;112(19):6104-9 [PMID: 25902489]
  50. Proc Natl Acad Sci U S A. 2015 Jul 7;112(27):8350-5 [PMID: 26100889]
  51. Integr Comp Biol. 2015 Sep;55(3):495-506 [PMID: 26173711]
  52. Vis Neurosci. 2015 Jan;32:E005 [PMID: 26241034]
  53. Sci Total Environ. 2016 Jan 15;541:176-183 [PMID: 26409147]
  54. Sci Rep. 2015 Nov 12;5:16293 [PMID: 26559327]
  55. Proc Biol Sci. 2015 Nov 22;282(1819): [PMID: 26559952]
  56. Proc Biol Sci. 2015 Dec 7;282(1820):20151886 [PMID: 26631562]
  57. Rapid Commun Mass Spectrom. 2016 Jan 15;30(1):1-8 [PMID: 26661965]
  58. PLoS One. 2016 Jan 06;11(1):e0143758 [PMID: 26735492]
  59. Dev Comp Immunol. 2016 Aug;61:13-24 [PMID: 26987526]
  60. J Exp Biol. 2016 Jun 1;219(Pt 11):1725-33 [PMID: 27026716]
  61. Comp Biochem Physiol A Mol Integr Physiol. 2016 Dec;202:23-37 [PMID: 27063208]
  62. Proc Natl Acad Sci U S A. 2016 May 10;113(19):5340-5 [PMID: 27118837]
  63. J Immunol. 2016 May 1;196(9):3517-23 [PMID: 27183649]
  64. Proc Biol Sci. 2016 May 25;283(1831): [PMID: 27226476]
  65. Conserv Physiol. 2013 Apr 08;1(1):cot002 [PMID: 27293586]
  66. Conserv Physiol. 2014 Jul 08;2(1):cou024 [PMID: 27293645]
  67. BMC Evol Biol. 2016 Jun 14;16(1):126 [PMID: 27296413]
  68. Conserv Physiol. 2016 Jan 11;4(1):cov055 [PMID: 27382465]
  69. Trends Biotechnol. 2017 Jan;35(1):55-65 [PMID: 27424151]
  70. J Exp Biol. 2017 Feb 1;220(Pt 3):397-407 [PMID: 27852751]
  71. R Soc Open Sci. 2016 Oct 26;3(10):160299 [PMID: 27853546]
  72. Oecologia. 1999 Aug;120(3):314-326 [PMID: 28308009]
  73. Oecologia. 1983 Mar;57(1-2):32-37 [PMID: 28310153]
  74. Oecologia. 1983 Jan;56(1):104-108 [PMID: 28310776]
  75. Anim Cogn. 2017 Jul;20(4):603-614 [PMID: 28343270]
  76. Environ Microbiol Rep. 2017 Aug;9(4):357-373 [PMID: 28418094]
  77. Sci Total Environ. 2017 Oct 15;596-597:481-495 [PMID: 28458223]
  78. F1000Res. 2017 Apr 20;6:526 [PMID: 28580133]
  79. PLoS One. 2017 Jun 7;12(6):e0178124 [PMID: 28591215]
  80. Nat Ecol Evol. 2016 Nov 21;1(1):4 [PMID: 28812572]
  81. Sci Rep. 2017 Sep 8;7(1):11042 [PMID: 28887553]
  82. Conserv Physiol. 2017 Aug 22;5(1):cox050 [PMID: 28928974]
  83. Nat Ecol Evol. 2018 Feb;2(2):288-298 [PMID: 29348644]
  84. Environ Toxicol Chem. 2018 Nov;37(11):2904-2911 [PMID: 30125983]
  85. Sci Rep. 2018 Oct 25;8(1):15786 [PMID: 30361507]
  86. J Morphol. 2018 Dec;279(12):1716-1724 [PMID: 30427064]
  87. J Comp Physiol B. 1985;156(2):229-36 [PMID: 3836233]
  88. J Exp Biol. 1978 Apr;73:85-105 [PMID: 650150]
  89. Science. 1982 Nov 26;218(4575):916-8 [PMID: 7134985]
  90. Annu Rev Physiol. 1994;56:579-621 [PMID: 8010752]
  91. Neurosci Lett. 1995 Dec 29;202(1-2):129-32 [PMID: 8787848]
  92. Nature. 1996 Oct 24;383(6602):677 [PMID: 8878474]
  93. Vision Res. 1977;17(7):787-92 [PMID: 898685]

Word Cloud

Created with Highcharts 10.0.0physiologicalecologyecologicalphysiologyapproachelasmobranchstrengthnichePhysiologicalconservationapplicationsworkElasmobranchsymposiumquestionsresearchincorporationaspectsspecies'holisticneededaddresscurrentfutureanthropogenicstressorsaffectingfishesrangeoverexploitationeffectsclimatechangeexampleoneseveralkeydeterminantsorganism'salongevolutionaryconstraintsinteractionsfundamentalroledeterminationleddevelopmentfieldconsidersmechanismscontextenvironmentunderstandmechanisticvariationsbegettrendsintegrativedisciplinerecentlyexperiencedresurgencerespectlargelyconjunctiontechnologicaladvancesextendedlabnaturalworldcriticalimportancespecieselasmobranchssharksskatesraysespeciallyunderstudiedthreatenedgroupvertebrates2017AmericanSocietymeetingAustinTexasentitled`ApplicationsEcologyResearch'providedplatformresearchersshowcaseexaminedlenshighlightpresentedemphasizedlinkingtoolsalsodemonstrateapplicabilityusingmethodissuesadvocateavailableframeworkwherebyresultseasilyaccessibleimplementationmanagementpracticesBridgingdisciplinesadvanceconservation:Conservation

Similar Articles

Cited By