Abnormal neural responses to harmonic syntactic structures in congenital amusia.

Linshu Zhou, Fang Liu, Jun Jiang, Hanyuan Jiang, Cunmei Jiang
Author Information
  1. Linshu Zhou: Music College, Shanghai Normal University, Shanghai, China. ORCID
  2. Fang Liu: School of Psychology and Clinical Language Sciences, University of Reading, Reading, UK.
  3. Jun Jiang: Music College, Shanghai Normal University, Shanghai, China.
  4. Hanyuan Jiang: Faculty of Humanities and Arts, Macau University of Science and Technology, Macau, China.
  5. Cunmei Jiang: Music College, Shanghai Normal University, Shanghai, China. ORCID

Abstract

In music, harmonic syntactic structures are organized hierarchically through local and long-distance dependencies. This study investigated whether congenital amusia, a neurodevelopmental disorder of pitch perception, is associated with impaired processing of harmonic syntactic structures. For stimuli, we used harmonic sequences containing two phrases, where the first phrase ended with a half cadence and the second with an authentic cadence. In Experiment 1, we manipulated the ending chord of the authentic cadence to be either syntactically regular or irregular based on local dependencies. Sixteen amusics and 16 controls judged the expectedness of these chords while their EEG waveforms were recorded. In comparison to the regular endings, irregular endings elicited an ERAN, an N5, and a late positive component in controls but not in amusics, indicating that amusics were impaired in processing local syntactic dependencies. In Experiment 2, we manipulated the half cadence of the harmonic sequences to either adhere to or violate long-distance syntactic dependencies. In response to irregular harmonic sequences, an ERAN-like component and an N5 were elicited in controls but not in amusics, suggesting that amusics were impaired in processing long-distance syntactic dependencies. Furthermore, for controls, the neural processing of local and long-distance syntactic dependencies was correlated at the later integration stage but not at the early detection stage. These findings indicate that amusia is associated with impairment in the detection and integration of local and long-distance syntactic violations. The implications of these findings in terms of hierarchical music-syntactic processing are discussed.

Keywords

References

  1. Alain, C., Achim, A., & Woods, D. L. (1999). Separate memory-related processing for auditory frequency and patterns. Psychophysiology, 36(6), 737-744. https://doi.org/10.1111/1469-8986.3660737
  2. Ayotte, J., Peretz, I., & Hyde, K. (2002). Congenital amusia: A group study of adults afflicted with a music-specific disorder. Brain, 125(2), 238-251. https://doi.org/10.1093/brain/awf028
  3. Besson, M., & Schön, D. (2001). Comparison between language and music. Annals of the New York Academy of Sciences, 930(1), 232-258. https://doi.org/10.1111/j.1749-6632.2001.tb05736.x
  4. Bharucha, J., & Krumhansl, C. L. (1983). The representation of harmonic structure in music: Hierarchies of stability as a function of context. Cognition, 13(1), 63-102. https://doi.org/10.1016/0010-0277(83)90003-3
  5. Bigand, E. (1993). Contribution of music to research on human auditory cognition. In S. McAdams & E. Bigand (Eds.), Thinking in sound: The cognitive psychology of human audition (pp. 231-277). Oxford, UK: Clarendon Press.
  6. Bigand, E., Delbé, C., Poulin-Charronnat, B., Leman, M., & Tillmann, B. (2014). Empirical evidence for musical syntax processing? Computer simulations reveal the contribution of auditory short-term memory. Frontiers in Systems Neuroscience, 8, 94. https://doi.org/10.3389/fnsys.2014.00094
  7. Cook, N. (1987). The perception of large-scale tonal closure. Music Perception, 5(2), 197-205. https://doi.org/10.2307/40285392
  8. Fitch, W. T., & Hauser, M. D. (2004). Computational constraints on syntactic processing in a nonhuman primate. Science, 303(5656), 377-380. https://doi.org/10.1126/science.1089401
  9. Foxton, J. M., Dean, J. L., Gee, R., Peretz, I., & Griffiths, T. D. (2004). Characterization of deficits in pitch perception underlying ‘tone deafness’. Brain, 127(4), 801-810. https://doi.org/10.1093/brain/awh105
  10. Friederici, A. D. (2004). Processing local transitions versus long-distance syntactic hierarchies. Trends in Cognitive Sciences, 8(6), 245-247. https://doi.org/10.1016/j.tics.2004.04.013
  11. Friederici, A. D., Bahlmann, J., Heim, S., Schubotz, R. I., & Anwander, A. (2006). The brain differentiates human and non-human grammars: Functional localization and structural connectivity. Proceedings of the National Academy of Sciences of the United States of America, 103(7), 2458-2463. https://doi.org/10.1073/pnas.0509389103
  12. Hauser, M. D., Chomsky, N., & Fitch, W. T. (2002). The faculty of language: What is it, who has it, and how did it evolve? Science, 298(5598), 1569-1579. https://doi.org/10.1126/science.298.5598.1569
  13. Henry, M. J., & McAuley, J. D. (2013). Failure to apply signal detection theory to the Montreal Battery of Evaluation of Amusia may misdiagnose amusia. Music Perception, 30(5), 480-496. https://doi.org/10.1525/mp.2013.30.5.480
  14. Huron, D. (2008). Sweet anticipation: Music and the psychology of expectation. Cambridge, MA: MIT Press.
  15. Huron, D., & Parncutt, R. (1993). An improved model of tonality perception incorporating pitch salience and echoic memory. Psychomusicology, 12(2), 154-171. https://doi.org/10.1037/h0094110
  16. Hyde, K. L., & Peretz, I. (2004). Brains that are out of tune but in time. Psychological Science, 15(5), 356-360. https://doi.org/10.1111/j.0956-7976.2004.00683.x
  17. James, C. E., Britz, J., Vuilleumier, P., Hauert, C.-A., & Michel, C. M. (2008). Early neuronal responses in right limbic structures mediate harmony incongruity processing in musical experts. NeuroImage, 42(4), 1597-1608. https://doi.org/10.1016/j.neuroimage.2008.06.025
  18. Jentschke, S., Friederici, A. D., & Koelsch, S. (2014). Neural correlates of music-syntactic processing in two-year old children. Developmental Cognitive Neuroscience, 9, 200-208. https://doi.org/10.1016/j.dcn.2014.04.005
  19. Jentschke, S., & Koelsch, S. (2009). Musical training modulates the development of syntax processing in children. NeuroImage, 47(2), 735-744. https://doi.org/10.1016/j.neuroimage.2009.04.090
  20. Jiang, C., Hamm, J. P., Lim, V. K., Kirk, I. J., & Yang, Y. (2010). Processing melodic contour and speech intonation in congenital amusics with Mandarin Chinese. Neuropsychologia, 48(9), 2630-2639. https://doi.org/10.1016/j.neuropsychologia.2010.05.009
  21. Jiang, C., Hamm, J. P., Lim, V. K., Kirk, I. J., & Yang, Y. (2011). Fine-grained pitch discrimination in congenital amusics with Mandarin Chinese. Music Perception, 28(5), 519-526. https://doi.org/10.1525/mp.2011.28.5.519
  22. Jiang, C., Lim, V. K., Wang, H., & Hamm, J. P. (2013). Difficulties with pitch discrimination influences pitch memory performance: Evidence from congenital amusia. PLOS One, 8(10), e79216. https://doi.org/10.1371/journal.pone.0079216
  23. Jiang, C., Liu, F., & Thompson, W. F. (2016). Impaired explicit processing of musical syntax and tonality in a group of Mandarin-speaking congenital amusics. Music Perception, 33(4), 401-413. https://doi.org/10.1525/mp.2016.33.4.401
  24. Jiang, C., Liu, F., & Wong, P. C. M. (2017). Sensitivity to musical emotion is influenced by tonal structure in congenital amusia. Scientific Reports, 7, 7624. https://doi.org/10.1038/s41598-017-08005-x
  25. Jiang, X., & Zhou, X. (2009). Processing different levels of syntactic hierarchy: An ERP study on Chinese. Neuropsychologia, 47(5), 1282-1293. https://doi.org/10.1016/j.neuropsychologia.2009.01.013
  26. Koelsch, S. (2009). Music-syntactic processing and auditory memory: Similarities and differences between ERAN and MMN. Psychophysiology, 46(1), 179-190. https://doi.org/10.1111/j.1469-8986.2008.00752.x
  27. Koelsch, S. (2011). Towards a neural basis of processing musical semantics. Physics of Life Reviews, 8(2), 89-105. https://doi.org/10.1016/j.plrev.2011.04.004
  28. Koelsch, S. (2012). Brain and music. Oxford, UK: Wiley-Blackwell.
  29. Koelsch, S., Gunter, T., Friederici, A. D., & Schröger, E. (2000). Brain indices of music processing: “Non-musicians” are musical. Journal of Cognitive Neuroscience, 12(3), 520-541. https://doi.org/10.1162/089892900562183
  30. Koelsch, S., & Jentschke, S. (2010). Differences in electric brain responses to melodies and chords. Journal of Cognitive Neuroscience, 22(10), 2251-2262. https://doi.org/10.1162/jocn.2009.21338
  31. Koelsch, S., Jentschke, S., Sammler, D., & Mietchen, D. (2007). Untangling syntactic and sensory processing: An ERP study of music perception. Psychophysiology, 44(3), 476-490. https://doi.org/10.1111/j.1469-8986.2007.00517.x
  32. Koelsch, S., Rohrmeier, M., Torrecuso, R., & Jentschke, S. (2013). Processing of hierarchical syntactic structure in music. Proceedings of the National Academy of Sciences of the United States of America, 110(38), 15443-15448. https://doi.org/10.1073/pnas.1300272110
  33. Koelsch, S., Schmidt, B., & Kansok, J. (2002). Effects of musical expertise on the early right anterior negativity: An event-related brain potential study. Psychophysiology, 39(5), 657-663. https://doi.org/10.1111/1469-8986.3950657
  34. Koelsch, S., & Siebel, W. A. (2005). Towards a neural basis of music perception. Trends in Cognitive Sciences, 9(12), 578-584. https://doi.org/10.1016/j.tics.2005.10.001
  35. Kolk, H. H., Chwilla, D. J., Van Herten, M., & Oor, P. J. (2003). Structure and limited capacity in verbal working memory: A study with event-related potentials. Brain and Language, 85(1), 1-36. https://doi.org/10.1016/S0093-934X(02)00548-5
  36. Krumhansl, C. L. (1990). Cognitive foundations of musical pitch. New York: NY: Oxford University Press.
  37. Lerdahl, F., & Jackendoff, R. (1983). A generative theory of tonal music. Cambridge, MA: MIT Press.
  38. Liu, F., Patel, A. D., Fourcin, A., & Stewart, L. (2010). Intonation processing in congenital amusia: Discrimination, identification and imitation. Brain, 133(6), 1682-1693. https://doi.org/10.1093/brain/awq089
  39. Loui, P., Grent-'t-Jong, T., Torpey, D., & Woldorff, M. (2005). Effects of attention on the neural processing of harmonic syntax in Western music. Cognitive Brain Research, 25(3), 678-687. https://doi.org/10.1016/j.cogbrainres.2005.08.019
  40. Makuuchi, M., Bahlmann, J., Anwander, A., & Friederici, A. D. (2009). Segregating the core computational faculty of human language from working memory. Proceedings of the National Academy of Sciences of the United States of America, 106(20), 8362-8367. https://doi.org/10.1073/pnas.0810928106
  41. Meyer, L. B. (1956). Emotion and meaning in music. Chicago, IL: University of Chicago Press.
  42. Norman-Haignere, S. V., Albouy, P., Caclin, A., McDermott, J. H., Kanwisher, N. G., & Tillmann, B. (2016). Pitch-responsive cortical regions in congenital amusia. Journal of Neuroscience, 36(10), 2986-2994. https://doi.org/10.1523/JNEUROSCI.2705-15.2016
  43. Oldfield, R. C. (1971). The assessment and analysis of handedness: The Edinburgh Inventory. Neuropsychologia, 9(1), 97-113. https://doi.org/10.1016/0028-3932(71)90067-4
  44. Omigie, D., Pearce, M. T., & Stewart, L. (2012). Tracking of pitch probabilities in congenital amusia. Neuropsychologia, 50(7), 1483-1493. https://doi.org/10.1016/j.neuropsychologia.2012.02.034
  45. Patel, A. D. (2003). Language, music, syntax and the brain. Nature Neuroscience, 6(7), 674-681. https://doi.org/10.1038/nn1082
  46. Patel, A. D. (2008). Music, language, and the brain. New York, NY: Oxford University Press.
  47. Patel, A. D., Gibson, E., Ratner, J., Besson, M., & Holcomb, P. J. (1998). Processing syntactic relations in language and music: An event-related potential study. Journal of Cognitive Neuroscience, 10(6), 717-733. https://doi.org/10.1162/089892998563121
  48. Peretz, I., Ayotte, J., Zatorre, R. J., Mehler, J., Ahad, P., Penhune, V. B., & Jutras, B. (2002). Congenital amusia: A disorder of fine-grained pitch discrimination. Neuron, 33(2), 185-191. https://doi.org/10.1016/S0896-6273(01)00580-3
  49. Peretz, I., Brattico, E., Järvenpää, M., & Tervaniemi, M. (2009). The amusic brain: In tune, out of key, and unaware. Brain, 132(5), 1277-1286. https://doi.org/10.1093/brain/awp055
  50. Peretz, I., Champod, A. S., & Hyde, K. L. (2003). Varieties of musical disorders: The Montreal Battery of Evaluation of Amusia. Annals of the New York Academy of Sciences, 999, 58-75. https://doi.org/10.1196/annals.1284.006
  51. Pfeifer, J., & Hamann, S. (2015). Revising the diagnosis of congenital amusia with the Montreal Battery of Evaluation of Amusia. Frontiers in Human Neuroscience, 9, 161. https://doi.org/10.3389/fnhum.2015.00161
  52. Phillips, C., Kazanina, N., & Abada, S. H. (2005). ERP effects of the processing of syntactic long-distance dependencies. Cognitive Brain Research, 22(3), 407-428. https://doi.org/10.1016/j.cogbrainres.2004.09.012
  53. Poulin-Charronnat, B., Bigand, E., & Koelsch, S. (2006). Processing of musical syntax tonic versus subdominant: An event-related potential study. Journal of Cognitive Neuroscience, 18(9), 1545-1554. https://doi.org/10.1162/jocn.2006.18.9.1545
  54. Rohrmeier, M. (2011). Towards a generative syntax of tonal harmony. Journal of Mathematics and Music, 5(1), 35-53. https://doi.org/10.1080/17459737.2011.573676
  55. Steinbeis, N., & Koelsch, S. (2008). Shared neural resources between music and language indicate semantic processing of musical tension-resolution patterns. Cerebral Cortex, 18(5), 1169-1178. https://doi.org/10.1093/cercor/bhm149
  56. Sun, L., Liu, F., Zhou, L., & Jiang, C. (2018). Musical training modulates the early but not the late stage of rhythmic syntactic processing. Psychophysiology, 55(2), e12983. https://doi.org/10.1111/psyp.12983
  57. Sun, Y., Lu, X., Ho, H. T., Johnson, B. W., Sammler, D., & Thompson, W. F. (2018). Syntactic processing in music and language: Parallel abnormalities observed in congenital amusia. NeuroImage: Clinical, 19, 640-651. https://doi.org/10.1016/j.nicl.2018.05.032
  58. Tervaniemi, M., Rytkönen, M., Schröger, E., Ilmoniemi, R. J., & Näätänen, R. (2001). Superior formation of cortical memory traces for melodic patterns in musicians. Learning & Memory, 8(5), 295-300. https://doi.org/10.1101/lm.39501
  59. Tillmann, B., Gosselin, N., Bigand, E., & Peretz, I. (2012). Priming paradigm reveals harmonic structure processing in congenital amusia. Cortex, 48(8), 1073-1078. https://doi.org/10.1016/j.cortex.2012.01.001
  60. Tillmann, B., Lalitte, P., Albouy, P., Caclin, A., & Bigand, E. (2016). Discrimination of tonal and atonal music in congenital amusia: The advantage of implicit tasks. Neuropsychologia, 85, 10-18. https://doi.org/10.1016/j.neuropsychologia.2016.02.027
  61. Tillmann, B., Lévêque, Y., Fornoni, L., Albouy, P., & Caclin, A. (2016). Impaired short-term memory for pitch in congenital amusia. Brain Research, 1640, 251-263. https://doi.org/10.1016/j.brainres.2015.10.035
  62. Vaughan-Evans, A., Kuipers, J. R., Thierry, G., & Jones, M. W. (2014). Anomalous transfer of syntax between languages. Journal of Neuroscience, 34(24), 8333-8335. https://doi.org/10.1523/JNEUROSCI.0665-14.2014
  63. Waters, G. S., & Caplan, D. (2004). Verbal working memory and on-line syntactic processing: Evidence from self-paced listening. Quarterly Journal of Experimental Psychology Section A, 57(1), 129-163. https://doi.org/10.1080/02724980343000170
  64. Webster, J. (2001). Sonata form. In S. Sadie (Ed.), New Grove dictionary of music and musicians (2nd ed., Vol. 23, pp. 287-701). New York, NY: Grove.
  65. Zendel, B. R., Lagrois, M.-É., Robitaille, N., & Peretz, I. (2015). Attending to pitch information inhibits processing of pitch information: The curious case of amusia. Journal of Neuroscience, 35(9), 3815-3824. https://doi.org/10.1523/JNEUROSCI.3766-14.2015
  66. Zhou, L., Liu, F., Jing, X., & Jiang, C. (2017). Neural differences between the processing of musical meaning conveyed by direction of pitch change and natural music in congenital amusia. Neuropsychologia, 96, 29-38. https://doi.org/10.1016/j.neuropsychologia.2016.12.024

Grants

  1. 678733/European Research Council

MeSH Term

Adult
Auditory Perception
Auditory Perceptual Disorders
Electroencephalography
Evoked Potentials, Auditory
Female
Humans
Male
Music
Young Adult

Word Cloud

Created with Highcharts 10.0.0syntacticharmoniclocallong-distancedependenciesprocessingamusicsamusiacadencecontrolsstructurescongenitalimpairedsequencesirregularassociatedhalfauthenticExperimentmanipulatedeitherregularendingselicitedN5componentneuralintegrationstagedetectionfindingshierarchicaldependencymusicorganizedhierarchicallystudyinvestigatedwhetherneurodevelopmentaldisorderpitchperceptionstimuliusedcontainingtwophrasesfirstphraseendedsecond1endingchordsyntacticallybasedSixteen16judgedexpectednesschordsEEGwaveformsrecordedcomparisonERANlatepositiveindicating2adhereviolateresponseERAN-likesuggestingFurthermorecorrelatedlaterearlyindicateimpairmentviolationsimplicationstermsmusic-syntacticdiscussedAbnormalresponsessyntaxstructure

Similar Articles

Cited By