Uncertainty analysis of species distribution models.

Xi Chen, Nedialko B Dimitrov, Lauren Ancel Meyers
Author Information
  1. Xi Chen: Graduate Program in Operations Research Industrial Engineering, The University of Texas at Austin, Austin, Texas, United States of America. ORCID
  2. Nedialko B Dimitrov: Graduate Program in Operations Research Industrial Engineering, The University of Texas at Austin, Austin, Texas, United States of America.
  3. Lauren Ancel Meyers: Department of Integrative Biology, The University of Texas at Austin, Austin, Texas, United States of America.

Abstract

The maximum entropy model, a commonly used species distribution model (SDM) normally combines observations of the species occurrence with environmental information to predict the geographic distributions of animal or plant species. However, it only produces point estimates for the probability of species existence. To understand the uncertainty of the point estimates, we analytically derived the variance of the outputs of the maximum entropy model from the variance of the input. We applied the analytic method to obtain the standard deviation of dengue importation probability and Aedes aegypti suitability. Dengue occurrence data and Aedes aegypti mosquito abundance data, combined with demographic and environmental data, were applied to obtain point estimates and the corresponding variance. To address the issue of not having the true distributions for comparison, we compared and contrasted the performance of the analytical expression with the bootstrap method and Poisson point process model which proved of equivalence of maximum entropy model with the assumption of independent point locations. Both Dengue importation probability and Aedes aegypti mosquito suitability examples show that the methods generate comparatively the same results and the analytic method we introduced is dramatically faster than the bootstrap method and directly apply to maximum entropy model.

References

  1. Am J Trop Med Hyg. 2002 Feb;66(2):213-22 [PMID: 12135296]
  2. MD Comput. 1997 Jul-Aug;14(4):306-17 [PMID: 9230594]
  3. Biometrics. 2013 Mar;69(1):274-81 [PMID: 23379623]
  4. Am J Trop Med Hyg. 2005 Mar;72(3):304-10 [PMID: 15772327]
  5. Ecol Lett. 2005 Sep;8(9):993-1009 [PMID: 34517687]
  6. J Am Mosq Control Assoc. 2012 Sep;28(3):240-7 [PMID: 23833905]
  7. Biometrics. 2009 Jun;65(2):554-63 [PMID: 18759851]
  8. BMC Infect Dis. 2017 May 4;17(1):284 [PMID: 28468671]
  9. J Med Entomol. 2014 Sep;51(5):1019-28 [PMID: 25276932]

Grants

  1. U01CK000512/ACL HHS
  2. U01 CK000512/NCEZID CDC HHS

MeSH Term

Aedes
Algorithms
Animals
Biodiversity
Dengue
Dengue Virus
Ecosystem
Entropy
Models, Theoretical
Mosquito Vectors
Uncertainty

Word Cloud

Created with Highcharts 10.0.0modelspeciespointmaximumentropymethodestimatesprobabilityvarianceAedesaegyptidatadistributionoccurrenceenvironmentaldistributionsappliedanalyticobtainimportationsuitabilityDenguemosquitobootstrapcommonlyusedSDMnormallycombinesobservationsinformationpredictgeographicanimalplantHoweverproducesexistenceunderstanduncertaintyanalyticallyderivedoutputsinputstandarddeviationdengueabundancecombineddemographiccorrespondingaddressissuetruecomparisoncomparedcontrastedperformanceanalyticalexpressionPoissonprocessprovedequivalenceassumptionindependentlocationsexamplesshowmethodsgeneratecomparativelyresultsintroduceddramaticallyfasterdirectlyapplyUncertaintyanalysismodels

Similar Articles

Cited By