Vector-borne disease and climate change adaptation in African dryland social-ecological systems.

Bruce A Wilcox, Pierre Echaubard, Michel de Garine-Wichatitsky, Bernadette Ramirez
Author Information
  1. Bruce A Wilcox: ASEAN Institute for Health Development, Mahidol University, 999 Salaya Phuttamonthon, Nakon Pathom, 73170, Thailand. wilcox.bru@mahidol.ac.th.
  2. Pierre Echaubard: ASEAN Institute for Health Development, Mahidol University, 999 Salaya Phuttamonthon, Nakon Pathom, 73170, Thailand. pierre.echaubard@globalhealthasia.org. ORCID
  3. Michel de Garine-Wichatitsky: ASTRE, Université de Montpellier, CIRA, INRA, F-34398, Montpellier, France.
  4. Bernadette Ramirez: Special Programme for Research and Training in Tropical Diseases, World Health Organization, Geneva, Switzerland.

Abstract

BACKGROUND: Drylands, which are among the biosphere's most naturally limiting and environmentally variable ecosystems, constitute three-quarters of the African continent. As a result, environmental sustainability and human development along with vector-borne disease (VBD) control historically have been especially challenging in Africa, particularly in the sub-Saharan and Sahelian drylands. Here, the VBD burden, food insecurity, environmental degradation, and social vulnerability are particularly severe. Changing climate can exacerbate the legion of environmental health threats in Africa, the social dimensions of which are now part of the international development agenda. Accordingly, the need to better understand the dynamics and complex coupling of populations and environments as exemplified by drylands is increasingly recognized as critical to the design of more sustainable interventions.
MAIN BODY: This scoping review examines the challenge of vector-borne disease control in drylands with a focus on Africa, and the dramatic, ongoing environmental and social changes taking place. Dryland societies persisted and even flourished in the past despite changing climates, extreme and unpredictable weather, and marginal conditions for agriculture. Yet intrusive forces largely out of the control of traditional dryland societies, along with the negative impacts of globalization, have contributed to the erosion of dryland's cultural and natural resources. This has led to the loss of resilience underlying the adaptive capacity formerly widely exhibited among dryland societies. A growing body of evidence from studies of environmental and natural resource management demonstrates how, in light of dryland system's inherent complexity, these factors and top-down interventions can impede sustainable development and vector-borne disease control. Strengthening adaptive capacity through community-based, participatory methods that build on local knowledge and are tailored to local ecological conditions, hold the best promise of reversing current trends.
CONCLUSIONS: A significant opportunity exists to simultaneously address the increasing threat of vector-borne diseases and climate change through methods aimed at strengthening adaptive capacity. The integrative framework and methods based on social-ecological systems and resilience theory offers a novel set of tools that allow multiple threats and sources of vulnerability to be addressed in combination. Integration of recent advances in vector borne disease ecology and wider deployment of these tools could help reverse the negative social and environmental trends currently seen in African drylands.

Keywords

References

  1. Infect Dis Poverty. 2017 Dec 12;6(1):164 [PMID: 29228976]
  2. J R Soc Med. 2013 Oct;106(10):408-14 [PMID: 23824332]
  3. Philos Trans R Soc Lond B Biol Sci. 2012 Nov 19;367(1606):3062-75 [PMID: 23045705]
  4. Science. 2012 Sep 21;337(6101):1499-501 [PMID: 22997329]
  5. Cad Saude Publica. 2001;17 Suppl:7-22; discussion 23-36 [PMID: 11426254]
  6. Emerg Infect Dis. 2010 Oct;16(10):1601-4 [PMID: 20875289]
  7. Mem Inst Oswaldo Cruz. 2013;108 Suppl 1:11-7 [PMID: 24473798]
  8. Ann Trop Med Parasitol. 2006 Jul-Sep;100(5-6):455-64 [PMID: 16899148]
  9. Philos Trans R Soc Lond B Biol Sci. 2012 Nov 19;367(1606):3158-77 [PMID: 23045713]
  10. Science. 2007 Sep 14;317(5844):1513-6 [PMID: 17872436]
  11. Infect Dis Poverty. 2018 Nov 29;7(1):126 [PMID: 30541601]
  12. Bull World Health Organ. 2010 Dec 1;88(12):943-8 [PMID: 21124720]
  13. Ecohealth. 2015 Jun;12(2):220-6 [PMID: 25851197]
  14. Int J Parasitol. 2005 Jun;35(7):725-32 [PMID: 15925596]
  15. Acta Trop. 2017 Nov;175:50-59 [PMID: 27586040]
  16. Vet Parasitol. 2014 Jun 16;203(1-2):6-20 [PMID: 24709006]
  17. Science. 2007 May 11;316(5826):847-51 [PMID: 17495163]
  18. Front Public Health. 2019 May 22;7:85 [PMID: 31192179]
  19. Braz J Infect Dis. 2015 Mar-Apr;19(2):196-205 [PMID: 25636189]
  20. Proc Natl Acad Sci U S A. 2011 Dec 6;108(49):19449-50 [PMID: 22114189]
  21. Clin Microbiol Rev. 2004 Jan;17(1):136-73 [PMID: 14726459]
  22. Parasitology. 2004;129 Suppl:S3-14 [PMID: 15938502]
  23. Proc Natl Acad Sci U S A. 2015 Jul 14;112(28):8523-4 [PMID: 26124103]
  24. Environ Health Prev Med. 2005 Sep;10(5):263-72 [PMID: 21432130]
  25. Infect Dis Poverty. 2017 Dec 11;6(1):166 [PMID: 29228986]
  26. J Exp Biol. 2010 Mar 15;213(6):946-54 [PMID: 20190119]
  27. Int J Health Geogr. 2010 Oct 27;9:54 [PMID: 20979609]
  28. One Health. 2015 Sep 13;1:44-48 [PMID: 28616464]
  29. J Environ Manage. 2014 Jan;132:207-19 [PMID: 24316752]
  30. Ann N Y Acad Sci. 2000;916:222-32 [PMID: 11193624]
  31. Proc Natl Acad Sci U S A. 2010 Dec 21;107(51):22026-31 [PMID: 21135232]
  32. Front Vet Sci. 2018 Dec 17;5:303 [PMID: 30619895]
  33. Curr Anthropol. 1999 Dec;40(5):729-735 [PMID: 10539952]
  34. Brookings Pap Econ Act. 1998;(2):207-95 [PMID: 12295931]
  35. Ann N Y Acad Sci. 2015 Apr;1342:62-7 [PMID: 25891142]
  36. Parasitology. 1999 Nov;119 ( Pt 5):455-66 [PMID: 10599078]
  37. Rev Sci Tech. 2004 Aug;23(2):613-23 [PMID: 15702723]
  38. Philos Trans R Soc Lond B Biol Sci. 2017 Jul 19;372(1725): [PMID: 28584177]
  39. PLoS One. 2015 Sep 23;10(9):e0138138 [PMID: 26398118]
  40. Vet Parasitol. 2011 Nov 24;182(1):14-21 [PMID: 21852040]
  41. PLoS One. 2017 Oct 11;12(10):e0183583 [PMID: 29020041]

Grants

  1. 001/World Health Organization

MeSH Term

Africa
Agriculture
Animals
Climate Change
Communicable Disease Control
Desert Climate
Disease Vectors
Ecosystem
Humans
Insect Vectors
Parasitic Diseases
Risk Factors
Rural Population
Socioeconomic Factors

Word Cloud

Created with Highcharts 10.0.0environmentaldiseasevector-bornecontroldrylandssocialdrylandAfricandevelopmentAfricaclimatesocietiesadaptivecapacitymanagementmethodschangevectoramongalongVBDparticularlyvulnerabilitycanthreatssustainableinterventionsconditionsnegativenaturalresiliencelocalknowledgetrendsdiseasessocial-ecologicalsystemstoolsborneVector-borneadaptationBACKGROUND:Drylandsbiosphere'snaturallylimitingenvironmentallyvariableecosystemsconstitutethree-quarterscontinentresultsustainabilityhumanhistoricallyespeciallychallengingsub-SaharanSahelianburdenfoodinsecuritydegradationsevereChangingexacerbatelegionhealthdimensionsnowpartinternationalagendaAccordinglyneedbetterunderstanddynamicscomplexcouplingpopulationsenvironmentsexemplifiedincreasinglyrecognizedcriticaldesignMAINBODY:scopingreviewexamineschallengefocusdramaticongoingchangestakingplaceDrylandpersistedevenflourishedpastdespitechangingclimatesextremeunpredictableweathermarginalagricultureYetintrusiveforceslargelytraditionalimpactsglobalizationcontributederosiondryland'sculturalresourcesledlossunderlyingformerlywidelyexhibitedgrowingbodyevidencestudiesresourcedemonstrateslightsystem'sinherentcomplexityfactorstop-downimpedeStrengtheningcommunity-basedparticipatorybuildtailoredecologicalholdbestpromisereversingcurrentCONCLUSIONS:significantopportunityexistssimultaneouslyaddressincreasingthreataimedstrengtheningintegrativeframeworkbasedtheoryoffersnovelsetallowmultiplesourcesaddressedcombinationIntegrationrecentadvancesecologywiderdeploymenthelpreversecurrentlyseenAdaptiveBiodiversityClimateComplexityIntegratedResilienceSocial-ecologicalsystemTraditional

Similar Articles

Cited By