Knowledge Preserving OSELM Model for Wi-Fi-Based Indoor Localization.

Ahmed Salih Al-Khaleefa, Mohd Riduan Ahmad, Azmi Awang Md Isa, Mona Riza Mohd Esa, Yazan Aljeroudi, Mohammed Ahmed Jubair, Reza Firsandaya Malik
Author Information
  1. Ahmed Salih Al-Khaleefa: Broadband and Networking (BBNET) Research Group, Centre for Telecommunication and Research Innovation (CeTRI), Fakulti Kejuruteraan Elektronik dan Kejuruteraan Komputer (FKEKK), Universiti Teknikal Malaysia Melaka (UTeM), Hang Tuah Jaya, Durian Tunggal 76100, Melaka, Malaysia. ahmed.salih89@siswa.ukm.edu.my. ORCID
  2. Mohd Riduan Ahmad: Broadband and Networking (BBNET) Research Group, Centre for Telecommunication and Research Innovation (CeTRI), Fakulti Kejuruteraan Elektronik dan Kejuruteraan Komputer (FKEKK), Universiti Teknikal Malaysia Melaka (UTeM), Hang Tuah Jaya, Durian Tunggal 76100, Melaka, Malaysia. riduan@utem.edu.my.
  3. Azmi Awang Md Isa: Broadband and Networking (BBNET) Research Group, Centre for Telecommunication and Research Innovation (CeTRI), Fakulti Kejuruteraan Elektronik dan Kejuruteraan Komputer (FKEKK), Universiti Teknikal Malaysia Melaka (UTeM), Hang Tuah Jaya, Durian Tunggal 76100, Melaka, Malaysia. azmiawang@utem.edu.my.
  4. Mona Riza Mohd Esa: Institute of High Voltage and High Current (IVAT), School of Electrical Engineering, Faculty of Engineering, Universiti Teknologi Malaysia (UTM), Skudai 81310, Johor Bharu, Malaysia. monariza@utm.my.
  5. Yazan Aljeroudi: Department of Mechanical Engineering, International Islamic University of Malaysia (IIUM), Selangor 53100, Malaysia. yazan.aljeroudi@gmail.com.
  6. Mohammed Ahmed Jubair: Faculty of Computer Science and Information Technology, Universiti Tun Hussein Onn Malaysia, Batu Pahat 86400, Johor, Malaysia. almohamadi611@gmail.com.
  7. Reza Firsandaya Malik: Faculty of Computer Science, Universitas Sriwijaya (UNSRI), Inderalaya, Sumatera Selatan 30151, Indonesia. rezafm@unsri.ac.id.

Abstract

Wi-Fi has shown enormous potential for indoor localization because of its wide utilization and availability. Enabling the use of Wi-Fi for indoor localization necessitates the construction of a fingerprint and the adoption of a learning algorithm. The goal is to enable the use of the fingerprint in training the classifiers for predicting locations. Existing models of machine learning Wi-Fi-based localization are brought from machine learning and modified to accommodate for practical aspects that occur in indoor localization. The performance of these models varies depending on their effectiveness in handling and/or considering specific characteristics and the nature of indoor localization behavior. One common behavior in the indoor navigation of people is its cyclic dynamic nature. To the best of our knowledge, no existing machine learning model for Wi-Fi indoor localization exploits cyclic dynamic behavior for improving localization prediction. This study modifies the widely popular online sequential extreme learning machine (OSELM) to exploit cyclic dynamic behavior for achieving improved localization results. Our new model is called knowledge preserving OSELM (KP-OSELM). Experimental results conducted on the two popular datasets TampereU and UJIndoorLoc conclude that KP-OSELM outperforms benchmark models in terms of accuracy and stability. The last achieved accuracy was 92.74% for TampereU and 72.99% for UJIndoorLoc.

Keywords

References

  1. IEEE Trans Neural Netw. 2006 Jul;17(4):879-92 [PMID: 16856652]
  2. IEEE Trans Neural Netw. 2006 Nov;17(6):1411-23 [PMID: 17131657]
  3. Neural Netw. 2012 Sep;33:58-66 [PMID: 22572469]
  4. Sensors (Basel). 2012;12(3):2798-817 [PMID: 22736978]
  5. Sensors (Basel). 2015 Jan 15;15(1):1804-24 [PMID: 25599427]
  6. Sensors (Basel). 2015 Jun 23;15(6):14809-29 [PMID: 26110413]
  7. IEEE Trans Cybern. 2016 Jan;46(1):194-205 [PMID: 26684258]
  8. IEEE Trans Cybern. 2017 Mar;47(3):651-660 [PMID: 26887025]
  9. IEEE Trans Image Process. 2016 Aug 10;25(10):4959-4973 [PMID: 28113624]
  10. Sensors (Basel). 2017 May 25;17(6): [PMID: 28587088]
  11. Sensors (Basel). 2017 Aug 05;17(8): [PMID: 28783073]

Grants

  1. PJP/2018/FKEKK(3B)/S01615/Universiti Teknikal Malaysia Melaka
  2. 14J64 and 4F966/Universiti Teknologi Malaysia

Word Cloud

Created with Highcharts 10.0.0localizationindoorlearningmachineWi-FibehaviorfingerprintmodelscyclicdynamicOSELMusenatureknowledgemodelpopularextremeresultsKP-OSELMTampereUUJIndoorLocaccuracyshownenormouspotentialwideutilizationavailabilityEnablingnecessitatesconstructionadoptionalgorithmgoalenabletrainingclassifierspredictinglocationsExistingWi-Fi-basedbroughtmodifiedaccommodatepracticalaspectsoccurperformancevariesdependingeffectivenesshandlingand/orconsideringspecificcharacteristicsOnecommonnavigationpeoplebestexistingexploitsimprovingpredictionstudymodifieswidelyonlinesequentialexploitachievingimprovednewcalledpreservingExperimentalconductedtwodatasetsconcludeoutperformsbenchmarktermsstabilitylastachieved9274%7299%KnowledgePreservingModelWi-Fi-BasedIndoorLocalization

Similar Articles

Cited By