Google Trends in Infodemiology and Infoveillance: Methodology Framework.

Amaryllis Mavragani, Gabriela Ochoa
Author Information
  1. Amaryllis Mavragani: Department of Computing Science and Mathematics, Faculty of Natural Sciences, University of Stirling, Stirling, United Kingdom. ORCID
  2. Gabriela Ochoa: Department of Computing Science and Mathematics, Faculty of Natural Sciences, University of Stirling, Stirling, United Kingdom. ORCID

Abstract

Internet data are being increasingly integrated into health informatics research and are becoming a useful tool for exploring human behavior. The most popular tool for examining online behavior is Google Trends, an open tool that provides information on trends and the variations of online interest in selected keywords and topics over time. Online search traffic data from Google have been shown to be useful in analyzing human behavior toward health topics and in predicting disease occurrence and outbreaks. Despite the large number of Google Trends studies during the last decade, the literature on the subject lacks a specific methodology framework. This article aims at providing an overview of the tool and data and at presenting the first methodology framework in using Google Trends in infodemiology and infoveillance, including the main factors that need to be taken into account for a strong methodology base. We provide a step-by-step guide for the methodology that needs to be followed when using Google Trends and the essential aspects required for valid results in this line of research. At first, an overview of the tool and the data are presented, followed by an analysis of the key methodological points for ensuring the validity of the results, which include selecting the appropriate keyword(s), region(s), period, and category. Overall, this article presents and analyzes the key points that need to be considered to achieve a strong methodological basis for using Google Trends data, which is crucial for ensuring the value and validity of the results, as the analysis of online queries is extensively integrated in health research in the big data era.

Keywords

References

  1. AMIA Annu Symp Proc. 2006;:244-8 [PMID: 17238340]
  2. J Med Internet Res. 2009 Mar 27;11(1):e11 [PMID: 19329408]
  3. N Engl J Med. 2009 May 21;360(21):2153-5, 2157 [PMID: 19423867]
  4. Euro Surveill. 2009 Oct 08;14(40):null [PMID: 19822118]
  5. Clin Infect Dis. 2009 Nov 15;49(10):1557-64 [PMID: 19845471]
  6. Am J Prev Med. 2011 May;40(5 Suppl 2):S154-8 [PMID: 21521589]
  7. Sci Rep. 2012;2:350 [PMID: 22482034]
  8. PLoS Comput Biol. 2012;8(7):e1002616 [PMID: 22844241]
  9. PLoS One. 2013;8(2):e56176 [PMID: 23457520]
  10. Sci Rep. 2013;3:1684 [PMID: 23619126]
  11. J Med Internet Res. 2013 Jul 18;15(7):e147 [PMID: 23896182]
  12. J Med Internet Res. 2014 Sep 18;16(9):e212 [PMID: 25236385]
  13. PLoS One. 2014 Oct 22;9(10):e109583 [PMID: 25337815]
  14. Sci Rep. 2015 Apr 02;5:9540 [PMID: 25835538]
  15. Public Health. 2016 Aug;137:147-53 [PMID: 26976489]
  16. Rev Saude Publica. 2016;50:17 [PMID: 27191153]
  17. J Med Internet Res. 2016 Sep 16;18(9):e252 [PMID: 27637361]
  18. Psychiatry Res. 2016 Dec 30;246:581-586 [PMID: 27837725]
  19. PLoS One. 2016 Nov 30;11(11):e0166566 [PMID: 27902717]
  20. Lupus. 2017 Jul;26(8):886-889 [PMID: 28162030]
  21. JMIR Public Health Surveill. 2017 Apr 06;3(2):e17 [PMID: 28385679]
  22. JMIR Cancer. 2016 May 04;2(1):e5 [PMID: 28410185]
  23. J Med Internet Res. 2017 Jun 09;19(6):e201 [PMID: 28600279]
  24. J Med Internet Res. 2017 Jun 13;19(6):e193 [PMID: 28611015]
  25. J Med Internet Res. 2017 Jun 29;19(6):e228 [PMID: 28663166]
  26. JMIR Public Health Surveill. 2017 Aug 09;3(3):e51 [PMID: 28793981]
  27. J Med Internet Res. 2017 Nov 06;19(11):e370 [PMID: 29109069]
  28. JMIR Public Health Surveill. 2018 Jan 08;4(1):e2 [PMID: 29311050]
  29. J Med Internet Res. 2018 Jan 08;20(1):e6 [PMID: 29311051]
  30. JMIR Public Health Surveill. 2018 Jan 09;4(1):e4 [PMID: 29317382]
  31. JMIR Public Health Surveill. 2018 Feb 09;4(1):e16 [PMID: 29426815]
  32. JMIR Public Health Surveill. 2018 Mar 12;4(1):e24 [PMID: 29530839]
  33. J Med Internet Res. 2018 Mar 14;20(3):e85 [PMID: 29540337]
  34. JMIR Public Health Surveill. 2018 Mar 28;4(1):e30 [PMID: 29592849]
  35. J Med Internet Res. 2018 Apr 03;20(4):e130 [PMID: 29615386]
  36. JMIR Public Health Surveill. 2018 Apr 06;4(2):e37 [PMID: 29625958]
  37. JMIR Public Health Surveill. 2018 May 02;4(2):e10180 [PMID: 29720364]
  38. JMIR Ment Health. 2018 May 23;5(2):e43 [PMID: 29792291]
  39. J Med Internet Res. 2018 May 28;20(5):e205 [PMID: 29807880]
  40. J Med Internet Res. 2018 Jun 11;20(6):e206 [PMID: 29891471]
  41. J Med Internet Res. 2018 Jul 09;20(7):e236 [PMID: 29986843]
  42. JMIR Public Health Surveill. 2018 Sep 25;4(3):e65 [PMID: 30274968]
  43. J Med Internet Res. 2018 Oct 12;20(10):e10043 [PMID: 30314959]
  44. Public Health. 2018 Dec;165:9-15 [PMID: 30342281]
  45. J Med Internet Res. 2018 Oct 24;20(10):e11085 [PMID: 30355555]
  46. J Med Internet Res. 2018 Nov 06;20(11):e270 [PMID: 30401664]
  47. J Med Internet Res. 2018 Nov 19;20(11):e11669 [PMID: 30455162]
  48. JMIR Public Health Surveill. 2018 Nov 22;4(4):e10262 [PMID: 30467102]
  49. JMIR Public Health Surveill. 2018 Nov 22;4(4):e10827 [PMID: 30467106]
  50. JMIR Med Inform. 2018 Nov 29;6(4):e45 [PMID: 30497991]
  51. J Med Internet Res. 2018 Dec 06;20(12):e11817 [PMID: 30522991]
  52. JMIR Public Health Surveill. 2018 Dec 21;4(4):e11361 [PMID: 30578212]
  53. JMIR Public Health Surveill. 2019 Feb 28;5(1):e9176 [PMID: 30601755]
  54. J Med Internet Res. 2019 Jan 29;21(1):e10677 [PMID: 30694203]
  55. JMIR Mhealth Uhealth. 2019 Feb 12;7(2):e12264 [PMID: 30747718]
  56. JMIR Public Health Surveill. 2019 Mar 08;5(1):e13142 [PMID: 30763255]

Word Cloud

Created with Highcharts 10.0.0GoogledataTrendstoolhealthbehaviormethodologyresearchonlineusingresultsintegratedusefulhumantopicsframeworkarticleoverviewfirstinfodemiologyinfoveillanceneedstrongfollowedanalysiskeymethodologicalpointsensuringvaliditysbigInternetincreasinglyinformaticsbecomingexploringpopularexaminingopenprovidesinformationtrendsvariationsinterestselectedkeywordstimeOnlinesearchtrafficshownanalyzingtowardpredictingdiseaseoccurrenceoutbreaksDespitelargenumberstudieslastdecadeliteraturesubjectlacksspecificaimsprovidingpresentingincludingmainfactorstakenaccountbaseprovidestep-by-stepguideneedsessentialaspectsrequiredvalidlinepresentedincludeselectingappropriatekeywordregionperiodcategoryOverallpresentsanalyzesconsideredachievebasiscrucialvaluequeriesextensivelyeraInfodemiologyInfoveillance:MethodologyFrameworkinternet

Similar Articles

Cited By