Metallic photonic crystal-based sensor for cryogenic environments.

Timothy J Palinski, Gary W Hunter, Amogha Tadimety, John X J Zhang
Author Information

Abstract

We investigate the design, characterization, and application of metallic photonic crystal (MPC) structures, consisting of plasmonic gold nanogratings on top of a photonic waveguide, as transducers for lab-on-chip biosensing in cryogenic environments. The compact design offers a promising approach to sensitive, in situ biosensing platforms for astrobiology applications (e.g., on the "icy moons" of the outer solar system). We fabricated and experimentally characterized three MPC sensor geometries, with variable nanograting width, at temperatures ranging from 300 K to 180 K. Sensors with wider nanogratings were more sensitive to changes in the local dielectric environment. Temperature-dependent experiments revealed an increase in plasmonic resonance intensity of around 13% at 180 K (compared with 300 K), while the coupled plasmonic-photonic resonance was less sensitive to temperature, varying by less than 5%. Simulation results confirm the relative temperature stability of the plasmonic-photonic mode and, combined with its high sensitivity, suggest a novel application of this mode as the sensing transduction mechanism over wide temperature ranges. To our knowledge, this is among the first reports of the design and characterization of a nanoplasmonic sensor specifically for low-temperature sensing operation.

References

  1. Opt Express. 2013 Feb 11;21(3):2748-56 [PMID: 23481732]
  2. Sci Rep. 2017 Nov 22;7(1):15985 [PMID: 29167504]
  3. Chem Rev. 2011 Jun 8;111(6):3828-57 [PMID: 21648956]
  4. Nano Lett. 2009 Dec;9(12):4428-33 [PMID: 19842703]
  5. Opt Lett. 2016 Apr 15;41(8):1857-60 [PMID: 27082363]
  6. J Fluoresc. 2007 Nov;17(6):627-31 [PMID: 17849179]
  7. Anal Chem. 2013 Jan 15;85(2):1124-31 [PMID: 23214444]
  8. Opt Lett. 2010 Sep 15;35(18):3150-2 [PMID: 20847808]
  9. Opt Express. 2011 May 9;19(10):9213-20 [PMID: 21643175]
  10. Biosens Bioelectron. 2016 Feb 15;76:213-33 [PMID: 26318580]
  11. Biosens Bioelectron. 2007 Sep 30;23(2):151-60 [PMID: 17716889]
  12. Nano Lett. 2012 Mar 14;12(3):1561-5 [PMID: 22339644]
  13. Front Microbiol. 2017 Dec 20;8:2594 [PMID: 29326684]
  14. Sci Rep. 2016 Feb 23;6:22027 [PMID: 26903382]
  15. Anal Bioanal Chem. 2015 Sep;407(23):6939-63 [PMID: 26253225]
  16. Chem Rev. 2017 Apr 12;117(7):5110-5145 [PMID: 28358482]
  17. Biosens Bioelectron. 2019 Apr 1;130:236-244 [PMID: 30769288]
  18. Lab Chip. 2013 Jun 21;13(12):2183-98 [PMID: 23670195]
  19. ACS Nano. 2010 Jan 26;4(1):349-57 [PMID: 19947647]
  20. Proc Natl Acad Sci U S A. 2009 Nov 17;106(46):19227-32 [PMID: 19880744]
  21. Opt Express. 2016 Dec 12;24(25):28337-28352 [PMID: 27958544]
  22. Nanotechnology. 2015 Sep 11;26(36):365301 [PMID: 26294071]
  23. Phys Rev Lett. 2001 May 14;86(20):4688-91 [PMID: 11384315]
  24. Phys Rev Lett. 2003 Oct 31;91(18):183901 [PMID: 14611284]
  25. Lab Chip. 2011 Jan 21;11(2):282-7 [PMID: 21031227]

Word Cloud

Created with Highcharts 10.0.0KdesignphotonicsensitivesensortemperaturecharacterizationapplicationMPCplasmonicnanogratingsbiosensingcryogenicenvironments300180resonanceplasmonic-photoniclessmodesensinginvestigatemetalliccrystalstructuresconsistinggoldtopwaveguidetransducerslab-on-chipcompactofferspromisingapproachsituplatformsastrobiologyapplicationseg"icymoons"outersolarsystemfabricatedexperimentallycharacterizedthreegeometriesvariablenanogratingwidthtemperaturesrangingSensorswiderchangeslocaldielectricenvironmentTemperature-dependentexperimentsrevealedincreaseintensityaround13%comparedcoupledvarying5%Simulationresultsconfirmrelativestabilitycombinedhighsensitivitysuggestnoveltransductionmechanismwiderangesknowledgeamongfirstreportsnanoplasmonicspecificallylow-temperatureoperationMetalliccrystal-based

Similar Articles

Cited By