Fructose co-ingestion to increase carbohydrate availability in athletes.

Cas J Fuchs, Javier T Gonzalez, Luc J C van Loon
Author Information
  1. Cas J Fuchs: Department of Human Biology, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre+ (MUMC+), Maastricht, The Netherlands. ORCID
  2. Javier T Gonzalez: Department for Health, University of Bath, Bath, UK.
  3. Luc J C van Loon: Department of Human Biology, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre+ (MUMC+), Maastricht, The Netherlands. ORCID

Abstract

Carbohydrate availability is important to maximize endurance performance during prolonged bouts of moderate- to high-intensity exercise as well as for acute post-exercise recovery. The primary form of carbohydrates that are typically ingested during and after exercise are glucose (polymers). However, intestinal glucose absorption can be limited by the capacity of the intestinal glucose transport system (SGLT1). Intestinal fructose uptake is not regulated by the same transport system, as it largely depends on GLUT5 as opposed to SGLT1 transporters. Combining the intake of glucose plus fructose can further increase total exogenous carbohydrate availability and, as such, allow higher exogenous carbohydrate oxidation rates. Ingesting a mixture of both glucose and fructose can improve endurance exercise performance compared to equivalent amounts of glucose (polymers) only. Fructose co-ingestion can also accelerate post-exercise (liver) glycogen repletion rates, which may be relevant when rapid (<24 h) recovery is required. Furthermore, fructose co-ingestion can lower gastrointestinal distress when relatively large amounts of carbohydrate (>1.2 g/kg/h) are ingested during post-exercise recovery. In conclusion, combined ingestion of fructose with glucose may be preferred over the ingestion of glucose (polymers) only to help trained athletes maximize endurance performance during prolonged moderate- to high-intensity exercise sessions and accelerate post-exercise (liver) glycogen repletion.

Keywords

References

  1. Nutrients. 2017 Feb 20;9(2): [PMID: 28230742]
  2. Scand J Clin Lab Invest. 2006;66(3):211-26 [PMID: 16714250]
  3. Pflugers Arch. 1994 Mar;426(5):378-86 [PMID: 8015888]
  4. Am J Clin Nutr. 1988 Dec;48(6):1424-30 [PMID: 3202090]
  5. Med Sci Sports Exerc. 2011 Oct;43(10):1964-71 [PMID: 21407126]
  6. J Appl Physiol (1985). 2017 May 1;122(5):1055-1067 [PMID: 27789774]
  7. J Appl Physiol (1985). 2000 May;88(5):1529-36 [PMID: 10797108]
  8. Nutrients. 2017 Mar 30;9(4): [PMID: 28358334]
  9. Cell Metab. 2018 Feb 6;27(2):351-361.e3 [PMID: 29414685]
  10. Int J Sport Nutr. 1997 Jun;7(2):117-27 [PMID: 9189782]
  11. J Appl Physiol (1985). 1992 Feb;72(2):468-75 [PMID: 1559921]
  12. Am J Physiol Endocrinol Metab. 2009 May;296(5):E1140-7 [PMID: 19223653]
  13. Annu Rev Biochem. 1976;45:167-89 [PMID: 183599]
  14. J Appl Physiol (1985). 1986 Jul;61(1):165-72 [PMID: 3525502]
  15. J Physiol. 2011 Feb 1;589(Pt 3):711-25 [PMID: 21135051]
  16. Curr Opin Clin Nutr Metab Care. 2003 Jul;6(4):441-8 [PMID: 12806219]
  17. Int J Sports Med. 1985 Oct;6(5):282-6 [PMID: 3902679]
  18. Scand J Clin Lab Invest. 1978 Oct;38(6):557-60 [PMID: 705238]
  19. Am J Physiol Endocrinol Metab. 2000 Jan;278(1):E65-75 [PMID: 10644538]
  20. Curr Opin Clin Nutr Metab Care. 2018 May;21(3):214-222 [PMID: 29406418]
  21. Sports Med. 2014 May;44 Suppl 1:S79-85 [PMID: 24791919]
  22. Med Sci Sports Exerc. 1987 Oct;19(5):491-6 [PMID: 3316904]
  23. J Appl Physiol (1985). 1988 Nov;65(5):2018-23 [PMID: 3145274]
  24. Sports Med. 1992 Jul;14(1):27-42 [PMID: 1641541]
  25. Clin Nutr ESPEN. 2019 Feb;29:125-132 [PMID: 30661675]
  26. Med Sci Sports Exerc. 2016 Jan;48(1):123-31 [PMID: 26197030]
  27. Med Sci Sports Exerc. 2018 May;50(5):1039-1045 [PMID: 29232314]
  28. J Physiol. 2001 Oct 1;536(Pt 1):295-304 [PMID: 11579177]
  29. Int J Sports Med. 1990 Aug;11(4):253-8 [PMID: 2228353]
  30. Am J Physiol. 1997 Sep;273(3 Pt 1):E543-8 [PMID: 9316444]
  31. FEBS Lett. 1970 Jan 15;6(1):43-45 [PMID: 11947332]
  32. Am J Physiol. 1997 Aug;273(2 Pt 1):E416-24 [PMID: 9277396]
  33. Sports Med. 2014 May;44 Suppl 1:S25-33 [PMID: 24791914]
  34. Int J Sports Med. 1989 May;10 Suppl 1:S26-31 [PMID: 2744926]
  35. Biochem J. 1920 Jul;14(3-4):290-363 [PMID: 16742941]
  36. Biochem J. 1973 Jun;134(2):637-45 [PMID: 16742826]
  37. Nutr Metab Insights. 2015 Oct 14;8:29-35 [PMID: 26508874]
  38. J Appl Physiol (1985). 1986 Jul;61(1):338-43 [PMID: 3733622]
  39. Int J Sports Med. 2000 Jul;21(5):338-43 [PMID: 10950442]
  40. Sports Med. 2013 Nov;43(11):1139-55 [PMID: 23846824]
  41. Nutrition. 2004 Jul-Aug;20(7-8):669-77 [PMID: 15212750]
  42. Sports Med. 2000 Jun;29(6):407-24 [PMID: 10870867]
  43. Sports Med. 2003;33(2):117-44 [PMID: 12617691]
  44. J Appl Physiol (1985). 1989 Jan;66(1):179-83 [PMID: 2645262]
  45. J Appl Physiol (1985). 2000 May;88(5):1631-6 [PMID: 10797123]
  46. FASEB J. 1997 Jun;11(7):544-58 [PMID: 9212078]
  47. Physiol Rev. 2010 Jan;90(1):23-46 [PMID: 20086073]
  48. Sports Med. 2011 Sep 1;41(9):773-92 [PMID: 21846165]
  49. J Appl Physiol (1985). 2016 Jun 1;120(11):1328-34 [PMID: 27013608]
  50. J Appl Physiol (1985). 1986 Sep;61(3):1180-4 [PMID: 3531145]
  51. Diabetes. 2001 Jun;50(6):1263-8 [PMID: 11375325]
  52. Int J Sport Nutr Exerc Metab. 2010 Dec;20(6):515-32 [PMID: 21116024]
  53. Acta Physiol Scand. 1967 Oct-Nov;71(2):140-50 [PMID: 5584523]
  54. Int J Sport Nutr Exerc Metab. 2010 Apr;20(2):122-31 [PMID: 20479485]
  55. Sports Med. 2017 Mar;47(Suppl 1):23-32 [PMID: 28332117]
  56. Physiol Rep. 2018 Jan;6(1): [PMID: 29333721]
  57. Proc Nutr Soc. 2019 May;78(2):246-256 [PMID: 30348238]
  58. J Clin Invest. 2018 Feb 1;128(2):545-555 [PMID: 29388924]
  59. Med Sci Sports Exerc. 2008 Feb;40(2):275-81 [PMID: 18202575]
  60. Am J Physiol. 1977 Nov;233(5):E422-9 [PMID: 920805]
  61. Nutr Metab (Lond). 2012 Oct 02;9(1):89 [PMID: 23031075]
  62. Am J Physiol Endocrinol Metab. 2005 Jun;288(6):E1160-7 [PMID: 15671083]
  63. Eur J Sport Sci. 2017 Aug;17(7):874-884 [PMID: 28441908]
  64. Annu Rev Nutr. 2018 Aug 21;38:41-67 [PMID: 29751733]
  65. J Appl Physiol (1985). 1993 May;74(5):2146-54 [PMID: 8335542]
  66. J Clin Invest. 1998 Mar 15;101(6):1203-9 [PMID: 9502760]
  67. J Physiol. 2017 May 1;595(9):2785-2807 [PMID: 28012184]
  68. J Clin Invest. 1982 Apr;69(4):785-93 [PMID: 6804492]
  69. Am J Clin Nutr. 1993 Jul;58(1):75-9 [PMID: 8317393]
  70. Eur J Biochem. 2003 Jul;270(13):2773-81 [PMID: 12823547]
  71. J Physiol. 1991 Mar;434:423-40 [PMID: 1902517]
  72. J Appl Physiol (1985). 1996 Oct;81(4):1495-500 [PMID: 8904559]
  73. Am J Clin Nutr. 2017 Mar;105(3):609-617 [PMID: 28100512]
  74. Cell Metab. 2018 Mar 6;27(3):483-485 [PMID: 29514059]
  75. Diabetes. 2013 Jul;62(7):2259-65 [PMID: 23674606]
  76. Med Sci Sports Exerc. 2008 Oct;40(10):1789-94 [PMID: 18799989]
  77. Biochem J. 2008 Aug 15;414(1):1-18 [PMID: 18651836]
  78. Med Sci Sports Exerc. 2016 May;48(5):907-12 [PMID: 26606271]
  79. J Reprod Fertil. 1966 Dec;12(3):437-44 [PMID: 5928265]
  80. Am J Physiol Endocrinol Metab. 2016 Sep 1;311(3):E543-53 [PMID: 27436612]
  81. J Appl Physiol (1985). 1994 Mar;76(3):1014-9 [PMID: 8005840]
  82. Cell Metab. 2018 Apr 3;27(4):757-785 [PMID: 29617642]
  83. Am J Physiol Endocrinol Metab. 2015 Dec 15;309(12):E1032-9 [PMID: 26487008]
  84. Br J Nutr. 2006 Jul;96(1):56-61 [PMID: 16869991]
  85. Br J Nutr. 2005 Apr;93(4):485-92 [PMID: 15946410]
  86. J Appl Physiol (1985). 2004 Apr;96(4):1277-84 [PMID: 14657042]
  87. Diabetes. 1974 Jul;23(7):597-604 [PMID: 4842327]
  88. FASEB J. 1994 Apr 1;8(6):414-9 [PMID: 8168691]
  89. Appl Physiol Nutr Metab. 2014 Sep;39(9):998-1011 [PMID: 24951297]
  90. Diabetes. 1998 Jun;47(6):867-73 [PMID: 9604861]
  91. Med Sci Sports Exerc. 1989 Feb;21(1):45-50 [PMID: 2494417]
  92. Am J Physiol. 1993 Sep;265(3 Pt 1):E380-91 [PMID: 8214047]
  93. Med Sci Sports Exerc. 1996 Jan;28(1):i-vii [PMID: 9303999]
  94. Am J Clin Nutr. 2010 Nov;92(5):1071-9 [PMID: 20826630]
  95. Biochem J. 1993 Dec 15;296 ( Pt 3):785-96 [PMID: 8280078]
  96. J Clin Invest. 1966 Mar;45(3):388-98 [PMID: 5904556]

MeSH Term

Athletes
Blood Glucose
Dietary Carbohydrates
Eating
Exercise
Fructose
Glucose
Glycogen
Humans
Liver
Physical Endurance

Chemicals

Blood Glucose
Dietary Carbohydrates
Fructose
Glycogen
Glucose

Word Cloud

Created with Highcharts 10.0.0glucosecanfructoseexercisepost-exercisecarbohydrateavailabilityenduranceperformancerecoverypolymersco-ingestionmaximizeprolongedmoderate-high-intensityingestedintestinaltransportsystemSGLT1increaseexogenousratesamountsFructoseaccelerateliverglycogenrepletionmayingestionathletesCarbohydrateimportantboutswellacuteprimaryformcarbohydratestypicallyHoweverabsorptionlimitedcapacityIntestinaluptakeregulatedlargelydependsGLUT5opposedtransportersCombiningintakeplustotalallowhigheroxidationIngestingmixtureimprovecomparedequivalentalsorelevantrapid<24 hrequiredFurthermorelowergastrointestinaldistressrelativelylarge>12 g/kg/hconclusioncombinedpreferredhelptrainedsessionsGlucoseGlycogenLiverMetabolismMuscleOxidationResynthesisSimpleSugarsSportsNutritionSucrose

Similar Articles

Cited By