In Vitro Mutagenic and Genotoxic Assessment of a Mixture of the Cyanotoxins Microcystin-LR and Cylindrospermopsin.

Leticia Díez-Quijada, Ana I Prieto, María Puerto, Ángeles Jos, Ana M Cameán
Author Information
  1. Leticia Díez-Quijada: Area of Toxicology, Faculty of Pharmacy, University of Sevilla, C/Profesor García González 2, 41012 Sevilla, Spain. ldiezquijada@us.es.
  2. Ana I Prieto: Area of Toxicology, Faculty of Pharmacy, University of Sevilla, C/Profesor García González 2, 41012 Sevilla, Spain. anaprieto@us.es.
  3. María Puerto: Area of Toxicology, Faculty of Pharmacy, University of Sevilla, C/Profesor García González 2, 41012 Sevilla, Spain. mariapuerto@us.es.
  4. Ángeles Jos: Area of Toxicology, Faculty of Pharmacy, University of Sevilla, C/Profesor García González 2, 41012 Sevilla, Spain. angelesjos@us.es. ORCID
  5. Ana M Cameán: Area of Toxicology, Faculty of Pharmacy, University of Sevilla, C/Profesor García González 2, 41012 Sevilla, Spain. camean@us.es. ORCID

Abstract

The co-occurrence of various cyanobacterial toxins can potentially induce toxic effects different than those observed for single cyanotoxins, as interaction phenomena cannot be discarded. Moreover, mixtures are a more probable exposure scenario. However, toxicological information on the topic is still scarce. Taking into account the important role of mutagenicity and genotoxicity in the risk evaluation framework, the objective of this study was to assess the mutagenic and genotoxic potential of mixtures of two of the most relevant cyanotoxins, Microcystin-LR (MC-LR) and Cylindrospermopsin (CYN), using the battery of in vitro tests recommended by the European Food Safety Authority (EFSA) for food contaminants. Mixtures of 1:10 CYN/MC-LR (CYN concentration in the range 0.04-2.5 µg/mL) were used to perform the bacterial reverse-mutation assay (Ames test) in , the mammalian cell micronucleus (MN) test and the mouse lymphoma thymidine-kinase assay (MLA) on L5178YTk cells, while Caco-2 cells were used for the standard and enzyme-modified comet assays. The exposure periods ranged between 4 and 72 h depending on the assay. The genotoxicity of the mixture was observed only in the MN test with S9 metabolic fraction, similar to the results previously reported for CYN individually. These results indicate that cyanobacterial mixtures require a specific (geno)toxicity evaluation as their effects cannot be extrapolated from those of the individual cyanotoxins.

Keywords

References

  1. Toxicon. 1994 Jul;32(7):833-43 [PMID: 7940590]
  2. Ecotoxicology. 2011 Nov;20(8):1852-60 [PMID: 21695509]
  3. Chemosphere. 2017 Dec;189:319-329 [PMID: 28942258]
  4. Mutat Res. 2000 Dec 20;472(1-2):155-61 [PMID: 11113708]
  5. Environ Res. 2019 Jan;168:467-489 [PMID: 30399604]
  6. Toxicol Appl Pharmacol. 2005 Mar 15;203(3):257-63 [PMID: 15737679]
  7. Sci Total Environ. 2019 Jun 10;668:547-565 [PMID: 30856566]
  8. Toxicol In Vitro. 2015 Aug;29(5):926-32 [PMID: 25863213]
  9. Mutat Res. 2010 Jun 17;699(1-2):5-10 [PMID: 20381641]
  10. Toxicol Pathol. 2008 Apr;36(3):449-58 [PMID: 18441257]
  11. Toxins (Basel). 2017 Dec 16;9(12): [PMID: 29258177]
  12. Environ Sci Pollut Res Int. 2014;21(13):8006-15 [PMID: 24659433]
  13. FEBS Lett. 1990 May 21;264(2):187-92 [PMID: 2162782]
  14. Biochem Pharmacol. 1995 Jan 18;49(2):219-25 [PMID: 7840799]
  15. Mutagenesis. 2006 Jan;21(1):83-90 [PMID: 16434448]
  16. J Physiol Biochem. 2003 Dec;59(4):293-9 [PMID: 15164949]
  17. Food Chem Toxicol. 2018 Nov;121:413-422 [PMID: 30240729]
  18. Biomed Res Int. 2014;2014:949521 [PMID: 24955368]
  19. Mutat Res. 2003 Oct 7;540(2):127-40 [PMID: 14550497]
  20. Mar Drugs. 2013 Aug 21;11(8):3077-90 [PMID: 23966038]
  21. Food Chem Toxicol. 2019 Mar;125:106-132 [PMID: 30597222]
  22. Toxicon. 2002 Apr;40(4):471-6 [PMID: 11738241]
  23. Mutat Res Genet Toxicol Environ Mutagen. 2015 Jun;784-785:37-44 [PMID: 26046975]
  24. Toxicon. 2003 Jan;41(1):41-8 [PMID: 12467660]
  25. Food Chem Toxicol. 2017 Aug;106(Pt B):609-615 [PMID: 27591928]
  26. Methods Mol Biol. 2013;1044:431-58 [PMID: 23896892]
  27. Environ Toxicol. 2019 Mar;34(3):240-251 [PMID: 30461177]
  28. Environ Sci Process Impacts. 2013 Oct;15(11):1979-2003 [PMID: 24056894]
  29. Toxicon. 2002 Oct;40(10):1499-501 [PMID: 12368121]
  30. Arch Toxicol. 2011 Dec;85(12):1617-26 [PMID: 21607682]
  31. An Acad Bras Cienc. 2014 Mar;86(1):297-310 [PMID: 24676169]
  32. Environ Toxicol. 2012 May;27(5):277-84 [PMID: 20725938]
  33. Mini Rev Med Chem. 2016;16(13):1042-62 [PMID: 26951459]
  34. Arch Toxicol. 2017 Mar;91(3):1049-1130 [PMID: 28110405]
  35. Toxins (Basel). 2017 May 23;9(6): [PMID: 28545227]
  36. Mutat Res. 2004 Jan 10;557(1):1-6 [PMID: 14706513]
  37. Water Res. 2012 Apr 1;46(5):1566-75 [PMID: 22227240]
  38. Food Chem Toxicol. 2014 Oct;72:122-8 [PMID: 25038394]
  39. J Appl Toxicol. 2015 Apr;35(4):426-33 [PMID: 25219470]
  40. Toxins (Basel). 2017 Feb 25;9(3): [PMID: 28245621]
  41. EFSA J. 2018 Dec 18;17(1):e05519 [PMID: 32626066]
  42. Toxicon. 2013 Nov;74:76-82 [PMID: 23933197]
  43. Mutagenesis. 2002 Mar;17(2):105-9 [PMID: 11880538]
  44. Toxicon. 2011 Nov;58(6-7):471-9 [PMID: 21867723]
  45. Mutat Res. 2004 Apr 11;559(1-2):131-42 [PMID: 15066581]
  46. Mutat Res. 2011 Dec 24;726(2):98-103 [PMID: 21763450]
  47. Cell Biol Toxicol. 2005 Jan;21(1):1-26 [PMID: 15868485]
  48. J Toxicol Environ Health A. 2005 May 14;68(9):739-53 [PMID: 16020200]
  49. Food Chem Toxicol. 2016 Mar;89:92-103 [PMID: 26802678]
  50. Ecotoxicol Environ Saf. 2011 Sep;74(6):1567-72 [PMID: 21570723]
  51. Environ Toxicol Pharmacol. 2012 Nov;34(3):651-60 [PMID: 22986102]
  52. Mutagenesis. 1999 Jan;14(1):5-22 [PMID: 10474816]
  53. Environ Toxicol. 2003 Aug;18(4):243-51 [PMID: 12900943]
  54. Toxicon. 2009 Aug;54(2):161-9 [PMID: 19374914]
  55. Biochim Biophys Acta. 1998 Nov 27;1425(3):527-33 [PMID: 9838216]
  56. Arch Toxicol. 2010 May;84(5):405-10 [PMID: 20112101]
  57. Mini Rev Med Chem. 2016;16(13):1032-41 [PMID: 26891928]
  58. Environ Toxicol. 2006 Aug;21(4):299-304 [PMID: 16841306]
  59. Toxicol In Vitro. 2017 Feb;38:142-149 [PMID: 27686716]
  60. Environ Toxicol Chem. 2008 May;27(5):1152-9 [PMID: 18419199]
  61. Mutat Res. 2011 Dec 24;726(2):116-22 [PMID: 22001196]
  62. Mutat Res. 1983 May;113(3-4):173-215 [PMID: 6341825]

MeSH Term

Alkaloids
Bacterial Toxins
Caco-2 Cells
Cyanobacteria Toxins
Humans
Marine Toxins
Microcystins
Mutagenicity Tests
Mutagens
Uracil

Chemicals

Alkaloids
Bacterial Toxins
Cyanobacteria Toxins
Marine Toxins
Microcystins
Mutagens
cylindrospermopsin
Uracil
cyanoginosin LR

Word Cloud

Created with Highcharts 10.0.0cyanotoxinsmixturesgenotoxicityMicrocystin-LRCylindrospermopsinCYNassaytestcyanobacterialeffectsobservedexposuremutagenicityevaluationusedMNcellsmixtureresultsco-occurrencevarioustoxinscanpotentiallyinducetoxicdifferentsingleinteractionphenomenadiscardedMoreoverprobablescenarioHowevertoxicologicalinformationtopicstillscarceTakingaccountimportantroleriskframeworkobjectivestudyassessmutagenicgenotoxicpotentialtworelevantMC-LRusingbatteryvitrotestsrecommendedEuropeanFoodSafetyAuthorityEFSAfoodcontaminantsMixtures1:10CYN/MC-LRconcentrationrange004-25µg/mLperformbacterialreverse-mutationAmesmammaliancellmicronucleusmouselymphomathymidine-kinaseMLAL5178YTkCaco-2standardenzyme-modifiedcometassaysperiodsranged472hdependingS9metabolicfractionsimilarpreviouslyreportedindividuallyindicaterequirespecificgenotoxicityextrapolatedindividualVitroMutagenicGenotoxicAssessmentMixtureCyanotoxins

Similar Articles

Cited By