Nucleic acid-based ratiometric electrochemiluminescent, electrochemical and photoelectrochemical biosensors: a review.

Zhenhao Wang, Renzhong Yu, Hui Zeng, Xinxing Wang, Shizong Luo, Weihua Li, Xiliang Luo, Tao Yang
Author Information
  1. Zhenhao Wang: School of Chemical Engineering and Technology, Sun Yat-sen University, Southern Laboratory of Ocean Science and Engineering (Guangdong, Zhuhai), Zhuhai, 519082, China.
  2. Renzhong Yu: Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, Ministry of Education, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, China.
  3. Hui Zeng: School of Chemical Engineering and Technology, Sun Yat-sen University, Southern Laboratory of Ocean Science and Engineering (Guangdong, Zhuhai), Zhuhai, 519082, China.
  4. Xinxing Wang: Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, Ministry of Education, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, China.
  5. Shizong Luo: Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, Ministry of Education, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, China.
  6. Weihua Li: School of Chemical Engineering and Technology, Sun Yat-sen University, Southern Laboratory of Ocean Science and Engineering (Guangdong, Zhuhai), Zhuhai, 519082, China. ytlwh666@163.com.
  7. Xiliang Luo: Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, Ministry of Education, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, China. xiliangluo@qust.edu.cn.
  8. Tao Yang: School of Chemical Engineering and Technology, Sun Yat-sen University, Southern Laboratory of Ocean Science and Engineering (Guangdong, Zhuhai), Zhuhai, 519082, China. yangtao25@mail.sysu.edu.cn.

Abstract

The demand of precise assay of nucleic acids and other bioanalytes has been increasing enormously in various areas including point-of-care diagnostics, military, environmental monitoring and so on. Compared with other nucleic acid biosensors, the electrochemical nucleic acid biosensors possess a range of merits like amenable miniaturization, low costs and high sensitivity. Ratiometric electrochemical nucleic acid biosensors can overcome the inherent systematic errors of conventional electrochemical biosensors and enhance the reproducibility and credibility. This short review (with 81 refs.) summarizes the evolvements made in the area of nucleic acid-based biosensors based on ratiometric (electrochemiluminescent, electrochemical and photoelectrochemical) readout in the past few years. Many of the methods discussed here are based on the use of advanced nanomaterials such as quantum dots, graphitic carbon nitrides, graphene oxide, C-dots, gold nanoparticles, metal-organic frameworks, and respective nanohybrids. Three sections (on electrochemiluminescence, classical electrochemical and emerging photoelectrochemical systems) demonstrate the merits of ratiometric assays in various applications. The review ends with a section with conclusions and a discussion of future perspectives. Graphical abstract Ratiometric sensing strategies overcome the intrinsic systematic errors of conventional electrochemical sensors that suffer from environmental and personal factors, and thus leads to remarkably enhanced reproducibility and reliability.

Keywords

References

  1. Anal Chem. 2013 Feb 5;85(3):1358-66 [PMID: 23256634]
  2. Biosens Bioelectron. 2017 Jun 15;92:390-395 [PMID: 27836592]
  3. Anal Chem. 2013 Aug 20;85(16):8001-7 [PMID: 23931569]
  4. Biosens Bioelectron. 2016 Mar 15;77:76-82 [PMID: 26397417]
  5. Chemistry. 2016 Sep 5;22(37):13156-61 [PMID: 27534383]
  6. Chem Commun (Camb). 2014 Dec 7;50(94):14828-30 [PMID: 25322904]
  7. Anal Chem. 2017 Jan 3;89(1):966-973 [PMID: 27983797]
  8. Anal Chem. 2014 Aug 5;86(15):8010-6 [PMID: 25010201]
  9. Analyst. 2017 May 2;142(9):1562-1568 [PMID: 28379274]
  10. Anal Chem. 2012 Nov 20;84(22):9951-5 [PMID: 23101695]
  11. Anal Chem. 2017 Sep 5;89(17):8830-8835 [PMID: 28805061]
  12. Chem Rev. 2008 Jul;108(7):2506-53 [PMID: 18505298]
  13. Biosens Bioelectron. 2015 Apr 15;66:345-9 [PMID: 25460904]
  14. J Am Chem Soc. 2012 Jan 11;134(1):205-7 [PMID: 22175727]
  15. Nanoscale. 2016 Apr 28;8(16):8427-42 [PMID: 27056088]
  16. Anal Chim Acta. 2015 Jan 1;853:242-248 [PMID: 25467465]
  17. Biosens Bioelectron. 2016 Feb 15;76:2-19 [PMID: 26139320]
  18. Anal Chem. 2016 Jan 5;88(1):937-44 [PMID: 26626233]
  19. Talanta. 2001 May 30;54(4):531-59 [PMID: 18968276]
  20. Biosens Bioelectron. 2015 Sep 15;71:158-163 [PMID: 25897885]
  21. Biosens Bioelectron. 2016 Mar 15;77:378-84 [PMID: 26436325]
  22. Anal Chem. 2014 Feb 4;86(3):1608-13 [PMID: 24422505]
  23. Anal Chem. 2011 May 15;83(10):3817-23 [PMID: 21513282]
  24. Talanta. 2017 Jan 1;162:435-439 [PMID: 27837853]
  25. Anal Chem. 2017 Sep 5;89(17):9445-9451 [PMID: 28749132]
  26. Anal Chem. 2010 Jun 15;82(12):5046-52 [PMID: 20491433]
  27. Anal Chim Acta. 2016 Feb 18;908:95-101 [PMID: 26826691]
  28. Mikrochim Acta. 2018 Mar 27;185(4):239 [PMID: 29594715]
  29. Chem Commun (Camb). 2017 May 30;53(43):5810-5813 [PMID: 28387390]
  30. Biosens Bioelectron. 2018 May 30;106:57-63 [PMID: 29414089]
  31. Biosens Bioelectron. 2016 Jan 15;75:308-14 [PMID: 26332383]
  32. Anal Chim Acta. 2015 Jul 9;883:67-73 [PMID: 26088778]
  33. Biosens Bioelectron. 2016 Nov 15;85:267-271 [PMID: 27179567]
  34. Chem Rev. 2008 Jan;108(1):109-39 [PMID: 18095717]
  35. Anal Chem. 2017 Jun 20;89(12):6656-6662 [PMID: 28560874]
  36. Anal Chem. 2013 Jun 4;85(11):5335-9 [PMID: 23635353]
  37. Biosens Bioelectron. 2011 Mar 15;26(7):3325-30 [PMID: 21277764]
  38. Chem Commun (Camb). 2011 Aug 7;47(29):8292-4 [PMID: 21637886]
  39. Anal Chem. 2015 Nov 17;87(22):11345-52 [PMID: 26465256]
  40. Biosens Bioelectron. 2017 May 15;91:523-537 [PMID: 28086123]
  41. J Am Chem Soc. 2013 Apr 17;135(15):5517-20 [PMID: 23540773]
  42. Sci Rep. 2014 Mar 12;4:4360 [PMID: 24618513]
  43. Anal Chem. 2011 May 15;83(10):3873-80 [PMID: 21469702]
  44. Biosens Bioelectron. 2016 Mar 15;77:936-41 [PMID: 26528808]
  45. Biosens Bioelectron. 2015 Feb 15;64:386-91 [PMID: 25262063]
  46. Anal Chem. 2014 Mar 4;86(5):2784-8 [PMID: 24491218]
  47. Biosens Bioelectron. 2018 Apr 15;102:87-93 [PMID: 29127900]
  48. Anal Chem. 2015 Feb 3;87(3):1876-81 [PMID: 25541634]
  49. Anal Chem. 2013 Dec 17;85(24):11720-4 [PMID: 24256069]
  50. Chem Rev. 2004 Jun;104(6):3003-36 [PMID: 15186186]
  51. Chem Rev. 2009 May;109(5):1948-98 [PMID: 19301873]
  52. Anal Chem. 2015 Sep 1;87(17):8889-95 [PMID: 26244714]
  53. Biosens Bioelectron. 2018 May 30;106:64-70 [PMID: 29414090]
  54. J Am Chem Soc. 2011 Jul 27;133(29):11132-5 [PMID: 21718072]
  55. Biosens Bioelectron. 2015 Sep 15;71:51-56 [PMID: 25884734]
  56. Anal Chem. 2014 May 20;86(10):5158-63 [PMID: 24766500]
  57. Anal Chem. 2013 Jun 4;85(11):5321-5 [PMID: 23692466]
  58. Anal Chem. 2012 Sep 18;84(18):7700-7 [PMID: 22946551]
  59. Anal Chim Acta. 2018 Sep 26;1025:154-162 [PMID: 29801604]
  60. Proc Natl Acad Sci U S A. 2006 Nov 7;103(45):16677-80 [PMID: 17065320]
  61. Analyst. 2018 Jul 9;143(14):3353-3359 [PMID: 29893757]
  62. Biosens Bioelectron. 2015 Jan 15;63:33-38 [PMID: 25051535]
  63. Anal Chem. 2013 Dec 17;85(24):11960-5 [PMID: 24215536]
  64. Anal Chem. 2017 Nov 7;89(21):11560-11567 [PMID: 28994278]
  65. Anal Chem. 2015 Jul 21;87(14):7291-6 [PMID: 26125332]

Grants

  1. 21675092/National Natural Science Foundation of China
  2. 51525903/National Natural Science Foundation of China
  3. 21804076/National Natural Science Foundation of China
  4. 2017ASTCP-OS09/Aoshan Talents Outstanding Scientist Program Supported by Qingdao National Laboratory for Marine Science and Technology
  5. 201604016008/Special Project on the Integration of Industry, Education and Research of Guangzhou
  6. No. 20177611071010008/Foshan Nanhai Economic and Technological Promotion Bureau Project

MeSH Term

Biosensing Techniques
Electrochemical Techniques
Equipment Design
Gold
Graphite
Luminescent Measurements
Metal Nanoparticles
Metal-Organic Frameworks
Nitrogen Compounds
Nucleic Acid Hybridization
Nucleic Acids
Photochemical Processes
Quantum Dots

Chemicals

Metal-Organic Frameworks
Nitrogen Compounds
Nucleic Acids
graphene oxide
graphitic carbon nitride
Gold
Graphite

Word Cloud

Created with Highcharts 10.0.0electrochemicalnucleicbiosensorsacidRatiometricreviewratiometricphotoelectrochemicalvariousenvironmentalmeritsovercomesystematicerrorsconventionalreproducibilityacid-basedbasedelectrochemiluminescentdemandpreciseassayacidsbioanalytesincreasingenormouslyareasincludingpoint-of-carediagnosticsmilitarymonitoringComparedpossessrangelikeamenableminiaturizationlow costshighsensitivitycaninherentenhancecredibilityshort81refssummarizesevolvementsmadeareareadoutpastyearsManymethodsdiscusseduseadvancednanomaterialsquantumdotsgraphiticcarbonnitridesgrapheneoxideC-dotsgoldnanoparticlesmetal-organicframeworksrespectivenanohybridsThreesectionselectrochemiluminescenceclassicalemergingsystemsdemonstrateassays inapplicationsendssectionconclusionsdiscussionfutureperspectivesGraphicalabstractsensingstrategiesintrinsicsensorssufferpersonalfactorsthusleadsremarkablyenhancedreliabilityNucleicbiosensors:FerroceneMethyleneblueRatiosignalsdetection

Similar Articles

Cited By