Stimulated Raman Excited Fluorescence Spectroscopy of Visible Dyes.

Hanqing Xiong, Naixin Qian, Yupeng Miao, Zhilun Zhao, Wei Min
Author Information
  1. Hanqing Xiong: Department of Chemistry , Columbia University , New York , New York 10027 , United States.
  2. Naixin Qian: Department of Chemistry , Columbia University , New York , New York 10027 , United States.
  3. Yupeng Miao: Department of Chemistry , Columbia University , New York , New York 10027 , United States.
  4. Zhilun Zhao: Department of Chemistry , Columbia University , New York , New York 10027 , United States.
  5. Wei Min: Department of Chemistry , Columbia University , New York , New York 10027 , United States. ORCID

Abstract

Fluorescence spectroscopy and Raman spectroscopy are two major classes of spectroscopy methods in physical chemistry. Very recently, stimulated Raman excited fluorescence (SREF) has been demonstrated ( Xiong, H.; et al. Nature Photonics , 2019 , 13 , 412 - 417 ) as a new hybrid spectroscopy that combines the vibrational specificity of Raman spectroscopy with the superb sensitivity of fluorescence spectroscopy (down to the single-molecule level). However, this proof-of-concept study was limited by both the tunability of the commercial laser source and the availability of the excitable molecules in the near-infrared. As a result, the generality of SREF spectroscopy remains unaddressed, and the understanding of the critical electronic preresonance condition is lacking. In this work, we built a modified excitation source to explore SREF spectroscopy in the visible region. Harnessing a large palette of red dyes, we have systematically studied SREF spectroscopy on a dozen different cases with a fine spectral interval of several nanometers. The results not only establish the generality of SREF spectroscopy for a wide range of molecules but also reveal a tight window of proper electronic preresonance for the stimulated Raman pumping process. Our theoretical modeling and further experiments on newly synthesized dyes also support the obtained insights, which would be valuable in designing and optimizing future SREF experiments for single-molecule vibrational spectroscopy and supermultiplex vibrational imaging.

References

  1. Chemphyschem. 2009 Feb 2;10(2):344-7 [PMID: 19115321]
  2. Nature. 2017 Apr 27;544(7651):465-470 [PMID: 28424513]
  3. Chemphyschem. 2008 Apr 4;9(5):697-9 [PMID: 18330856]
  4. Science. 1997 Feb 21;275(5303):1102-6 [PMID: 9027306]
  5. Nat Methods. 2018 Mar;15(3):194-200 [PMID: 29334378]
  6. Annu Rev Phys Chem. 2007;58:461-88 [PMID: 17105414]
  7. J Phys Chem B. 2018 Oct 4;122(39):9218-9224 [PMID: 30208710]
  8. Nat Photonics. 2019 Jun;13(6):412-417 [PMID: 32607124]
  9. J Phys Chem Lett. 2018 Aug 2;9(15):4294-4301 [PMID: 30001137]
  10. Annu Rev Phys Chem. 1988;39:537-88 [PMID: 3075468]
  11. J Phys Chem Lett. 2019 Apr 18;10(8):1967-1972 [PMID: 30942587]
  12. Science. 1999 Mar 12;283(5408):1670-6 [PMID: 10073924]
  13. Anal Chim Acta. 2007 Oct 29;602(2):229-35 [PMID: 17933608]
  14. Proc Natl Acad Sci U S A. 1972 Sep;69(9):2622-6 [PMID: 4506783]
  15. Science. 1994 Nov 11;266(5187):1018-21 [PMID: 7973650]
  16. Chem Commun (Camb). 2017 Jun 6;53(46):6187-6190 [PMID: 28474031]
  17. Annu Rev Phys Chem. 2012;63:65-87 [PMID: 22224704]
  18. Anal Chim Acta. 2008 Jan 14;606(2):119-34 [PMID: 18082644]
  19. Chem Rev. 2017 Jun 14;117(11):7583-7613 [PMID: 28610424]
  20. Annu Rev Phys Chem. 2011;62:507-30 [PMID: 21453061]
  21. Phys Rev Lett. 1990 Nov 19;65(21):2716-2719 [PMID: 10042674]
  22. Chem Rev. 2017 Apr 12;117(7):5070-5094 [PMID: 27966347]
  23. Nat Commun. 2014 Jul 14;5:4424 [PMID: 25020075]
  24. J Phys Chem B. 2011 May 12;115(18):5425-30 [PMID: 21381637]

Grants

  1. R01 EB020892/NIBIB NIH HHS
  2. R01 GM128214/NIGMS NIH HHS
  3. R01 GM132860/NIGMS NIH HHS

Word Cloud

Created with Highcharts 10.0.0spectroscopySREFRamanvibrationalFluorescencestimulatedfluorescencesingle-moleculesourcemoleculesgeneralityelectronicpreresonancedyesalsoexperimentstwomajorclassesmethodsphysicalchemistryrecentlyexciteddemonstratedXiongHetalNaturePhotonics201913412-417newhybridcombinesspecificitysuperbsensitivitylevelHoweverproof-of-conceptstudylimitedtunabilitycommerciallaseravailabilityexcitablenear-infraredresultremainsunaddressedunderstandingcriticalconditionlackingworkbuiltmodifiedexcitationexplorevisibleregionHarnessinglargepaletteredsystematicallystudieddozendifferentcasesfinespectralintervalseveralnanometersresultsestablishwiderangerevealtightwindowproperpumpingprocesstheoreticalmodelingnewlysynthesizedsupportobtainedinsightsvaluabledesigningoptimizingfuturesupermultipleximagingStimulatedExcitedSpectroscopyVisibleDyes

Similar Articles

Cited By (12)