The initiation of puberty in Atlantic salmon brings about large changes in testicular gene expression that are modulated by the energy status.

Diego Crespo, Jan Bogerd, Elisabeth Sambroni, Florence LeGac, Eva Andersson, Rolf B Edvardsen, Elisabeth Jönsson Bergman, Björn Thrandur Björnsson, Geir Lasse Taranger, Rüdiger W Schulz
Author Information
  1. Diego Crespo: Division Developmental Biology, Department Biology, Science Faculty, Reproductive Biology Group, Utrecht University, Kruyt Building, room O 806, Padualaan 8, 3584 CH, Utrecht, The Netherlands.
  2. Jan Bogerd: Division Developmental Biology, Department Biology, Science Faculty, Reproductive Biology Group, Utrecht University, Kruyt Building, room O 806, Padualaan 8, 3584 CH, Utrecht, The Netherlands.
  3. Elisabeth Sambroni: INRA, UPR 1037 Laboratory of Fish Physiology and Genomics (LPGP), BIOSIT, OUEST-genopole, Bât. 16, Campus de Beaulieu, 35042, Rennes CEDEX, France.
  4. Florence LeGac: INRA, UPR 1037 Laboratory of Fish Physiology and Genomics (LPGP), BIOSIT, OUEST-genopole, Bât. 16, Campus de Beaulieu, 35042, Rennes CEDEX, France.
  5. Eva Andersson: Research Group Reproduction and Developmental Biology, Institute of Marine Research, Bergen, Norway.
  6. Rolf B Edvardsen: Research Group Reproduction and Developmental Biology, Institute of Marine Research, Bergen, Norway.
  7. Elisabeth Jönsson Bergman: Fish Endocrinology Laboratory, Department of Biological and Environmental Sciences, University of Gothenburg, S-40590, Gothenburg, Sweden.
  8. Björn Thrandur Björnsson: Fish Endocrinology Laboratory, Department of Biological and Environmental Sciences, University of Gothenburg, S-40590, Gothenburg, Sweden.
  9. Geir Lasse Taranger: Research Group Reproduction and Developmental Biology, Institute of Marine Research, Bergen, Norway.
  10. Rüdiger W Schulz: Division Developmental Biology, Department Biology, Science Faculty, Reproductive Biology Group, Utrecht University, Kruyt Building, room O 806, Padualaan 8, 3584 CH, Utrecht, The Netherlands. r.w.schulz@uu.nl. ORCID

Abstract

BACKGROUND: When puberty starts before males reach harvest size, animal welfare and sustainability issues occur in Atlantic salmon (Salmo salar) aquaculture. Hallmarks of male puberty are an increased proliferation activity in the testis and elevated androgen production. Examining transcriptional changes in salmon testis during the transition from immature to maturing testes may help understanding the regulation of puberty, potentially leading to procedures to modulate its start. Since differences in body weight influence, via unknown mechanisms, the chances for entering puberty, we used two feed rations to create body weight differences.
RESULTS: Maturing testes were characterized by an elevated proliferation activity of Sertoli cells and of single undifferentiated spermatogonia. Pituitary gene expression data suggest increased Gnrh receptor and gonadotropin gene expression, potentially responsible for the elevated circulating androgen levels in maturing fish. Transcriptional changes in maturing testes included a broad variety of signaling systems (e.g. Tgfβ, Wnt, insulin/Igf, nuclear receptors), but also, activation of metabolic pathways such as anaerobic metabolism and protection against ROS. Feed restriction lowered the incidence of puberty. In males maturing despite feed restriction, plasma androgen levels were higher than in maturing fish receiving the full ration. A group of 449 genes that were up-regulated in maturing fully fed fish, was up-regulated more prominently in testis from fish maturing under caloric restriction. Moreover, 421 genes were specifically up-regulated in testes from fish maturing under caloric restriction, including carbon metabolism genes, a pathway relevant for nucleotide biosynthesis and for placing epigenetic marks.
CONCLUSIONS: Undifferentiated spermatogonia and Sertoli cell populations increased at the beginning of puberty, which was associated with the up-regulation of metabolic pathways (e.g. anaerobic and ROS pathways) known from other stem cell systems. The higher androgen levels in males maturing under caloric restriction may be responsible for the stronger up-regulation of a common set of (449) maturation-associated genes, and the specific up-regulation of another set of (421) genes. The latter opened regulatory and/or metabolic options for initiating puberty despite feed restriction. As a means to reduce the incidence of male puberty in salmon, however, caloric restriction seems unsuitable.

Keywords

References

  1. Gen Comp Endocrinol. 1999 Mar;113(3):413-28 [PMID: 10068502]
  2. Nat Genet. 2000 May;25(1):25-9 [PMID: 10802651]
  3. Biol Reprod. 2001 Jun;64(6):1633-43 [PMID: 11369589]
  4. Development. 2002 Jun;129(11):2689-97 [PMID: 12015296]
  5. Biol Reprod. 2003 Dec;69(6):2109-17 [PMID: 12930714]
  6. J Biol Chem. 1957 May;226(1):497-509 [PMID: 13428781]
  7. Genome Res. 2003 Nov;13(11):2498-504 [PMID: 14597658]
  8. Proc Natl Acad Sci U S A. 2004 Feb 3;101(5):1327-32 [PMID: 14745012]
  9. Proc Natl Acad Sci U S A. 2004 Dec 7;101(49):17294-9 [PMID: 15569941]
  10. Proc Natl Acad Sci U S A. 2007 Jun 5;104(23):9691-6 [PMID: 17535919]
  11. Biol Reprod. 2007 Dec;77(6):970-7 [PMID: 17761645]
  12. Biol Reprod. 2008 Jan;78(1):27-34 [PMID: 17881768]
  13. Zoolog Sci. 2008 Mar;25(3):299-306 [PMID: 18393567]
  14. BMC Biol. 2008 Jun 03;6:24 [PMID: 18522719]
  15. J Neurosci. 2008 Aug 13;28(33):8189-98 [PMID: 18701681]
  16. Gen Comp Endocrinol. 2008 Nov-Dec;159(2-3):178-87 [PMID: 18799130]
  17. Nat Protoc. 2009;4(1):44-57 [PMID: 19131956]
  18. Gen Comp Endocrinol. 2009 Jun;162(2):134-8 [PMID: 19298819]
  19. Gen Comp Endocrinol. 2010 Feb 1;165(3):390-411 [PMID: 19348807]
  20. Gen Comp Endocrinol. 2010 Feb 1;165(3):438-55 [PMID: 19393655]
  21. Gen Comp Endocrinol. 2010 Feb 1;165(3):483-515 [PMID: 19442666]
  22. Proc Natl Acad Sci U S A. 2009 Jun 30;106(26):10859-64 [PMID: 19541612]
  23. Gastroenterology. 2009 Oct;137(4):1321-32 [PMID: 19563808]
  24. Cardiovasc Res. 2010 Jan 15;85(2):321-9 [PMID: 19578073]
  25. Gen Comp Endocrinol. 2010 Feb 1;165(3):412-37 [PMID: 19686749]
  26. BMC Genomics. 2009 Nov 20;10:546 [PMID: 19925684]
  27. Endocrinology. 2010 May;151(5):2349-60 [PMID: 20308533]
  28. Proc Natl Acad Sci U S A. 1991 Jul 1;88(13):5774-8 [PMID: 2062857]
  29. PLoS One. 2010 Nov 15;5(11):e13984 [PMID: 21085593]
  30. Aquat Toxicol. 2011 Jan 25;101(2):447-58 [PMID: 21126777]
  31. PLoS One. 2011 Feb 18;6(2):e16938 [PMID: 21364994]
  32. Nature. 2011 Mar 24;471(7339):518-22 [PMID: 21430780]
  33. BMC Res Notes. 2011 Mar 29;4:88 [PMID: 21447175]
  34. Endocrinology. 2011 Sep;152(9):3527-40 [PMID: 21750047]
  35. Proc Natl Acad Sci U S A. 2011 Aug 9;108(32):13153-8 [PMID: 21775673]
  36. Mol Cell Endocrinol. 2012 Apr 16;352(1-2):13-25 [PMID: 21871526]
  37. Development. 2012 Jul;139(14):2557-65 [PMID: 22675213]
  38. J Mol Endocrinol. 2012 Dec 31;50(1):1-18 [PMID: 23045716]
  39. Horm Behav. 2013 Mar;63(3):454-61 [PMID: 23268781]
  40. PLoS One. 2013;8(1):e53302 [PMID: 23301058]
  41. Development. 2013 Jun;140(12):2535-47 [PMID: 23715547]
  42. Development. 2013 Jul;140(14):3040-50 [PMID: 23821038]
  43. PLoS One. 2013 Oct 23;8(10):e76684 [PMID: 24194844]
  44. Biol Reprod. 2014 Jan 16;90(1):6 [PMID: 24258209]
  45. J Endocrinol. 2014 Feb 10;220(3):319-32 [PMID: 24363452]
  46. BMC Genomics. 2014 Feb 19;15:141 [PMID: 24548379]
  47. Cell Stem Cell. 2014 Aug 7;15(2):239-53 [PMID: 24835570]
  48. Mol Endocrinol. 2014 Nov;28(11):1785-95 [PMID: 25238195]
  49. Nucleic Acids Res. 2015 Jan;43(Database issue):D447-52 [PMID: 25352553]
  50. J Cell Sci. 2014 Dec 15;127(Pt 24):5204-17 [PMID: 25380823]
  51. Mol Endocrinol. 2015 Jan;29(1):76-98 [PMID: 25396299]
  52. Gen Comp Endocrinol. 2015 Jan 15;211:52-61 [PMID: 25435279]
  53. Trends Cell Biol. 2015 May;25(5):249-64 [PMID: 25592806]
  54. Endocrinology. 2015 Oct;156(10):3747-62 [PMID: 25993524]
  55. Cell Tissue Res. 2016 Feb;363(2):579-88 [PMID: 26077926]
  56. Endocrinology. 2015 Oct;156(10):3804-17 [PMID: 26207345]
  57. Vitam Horm. 2015;99:63-90 [PMID: 26279373]
  58. Genes Dev. 2015 Nov 1;29(21):2312-24 [PMID: 26545815]
  59. Mol Cell. 2016 Jun 2;62(5):695-711 [PMID: 27259202]
  60. Annu Rev Cell Dev Biol. 2016 Oct 6;32:399-409 [PMID: 27482603]
  61. Mol Cell Endocrinol. 2016 Dec 5;437:237-251 [PMID: 27566230]
  62. Cell Metab. 2017 Jan 10;25(1):27-42 [PMID: 27641100]
  63. Curr Opin Endocrinol Diabetes Obes. 2017 Jun;24(3):215-224 [PMID: 28248755]
  64. BMC Genomics. 2017 Jun 5;18(1):441 [PMID: 28583077]
  65. Mol Cell Endocrinol. 2017 Oct 15;454:112-124 [PMID: 28645700]
  66. Development. 2017 Sep 1;144(17):3022-3030 [PMID: 28851723]
  67. Genetics. 2017 Nov;207(3):1007-1022 [PMID: 28893856]
  68. Cancer Metastasis Rev. 2017 Dec;36(4):635-653 [PMID: 29134486]
  69. Biol Reprod. 2018 Feb 1;98(2):227-238 [PMID: 29228103]
  70. Endocrinology. 2018 Feb 1;159(2):980-993 [PMID: 29272351]
  71. Sci Rep. 2018 Jan 30;8(1):1912 [PMID: 29382956]
  72. J Mol Endocrinol. 2018 May;60(4):273-284 [PMID: 29476039]
  73. J Clin Invest. 2018 May 1;128(5):1787-1792 [PMID: 29584617]
  74. Nat Commun. 2018 May 1;9(1):1747 [PMID: 29717114]
  75. Front Neurosci. 2018 May 03;12:302 [PMID: 29773976]
  76. Dev Cell. 2018 Sep 10;46(5):651-667.e10 [PMID: 30146481]
  77. Physiol Rep. 2018 Sep;6(17):e13809 [PMID: 30175449]
  78. Endocrinology. 2018 Oct 1;159(10):3549-3562 [PMID: 30202919]
  79. Sci Rep. 2018 Oct 25;8(1):15825 [PMID: 30361543]
  80. J Endocrinol. 2018 Dec 1;239(3):351-363 [PMID: 30400013]
  81. Gen Comp Endocrinol. 1982 Apr;46(4):428-34 [PMID: 7095405]
  82. Biol Reprod. 1995 Mar;52(3):697-704 [PMID: 7756464]
  83. Gen Comp Endocrinol. 1995 Nov;100(2):218-25 [PMID: 8582603]
  84. Am J Physiol. 1998 Dec;275(6):R1793-802 [PMID: 9843868]

Grants

  1. 12622/Norwegian Ministry of Fisheries and Coastal Affairs
  2. LIFECYCLE FP7-222719/European Research Council

MeSH Term

Animals
Energy Metabolism
Gene Expression Profiling
Gene Expression Regulation, Developmental
Male
Oligonucleotide Array Sequence Analysis
Salmo salar
Sexual Maturation
Testis

Word Cloud

Created with Highcharts 10.0.0pubertymaturingrestrictionfishgenessalmonandrogentestescaloricmalesincreasedtestiselevatedchangesfeedgeneexpressionlevelsmetabolicpathwaysup-regulatedup-regulationAtlanticmaleproliferationactivitymaypotentiallydifferencesbodyweightSertolispermatogoniaresponsiblesystemseganaerobicmetabolismROSincidencedespitehigher449421cellsetBACKGROUND:startsreachharvestsizeanimalwelfaresustainabilityissuesoccurSalmosalaraquacultureHallmarksproductionExaminingtranscriptionaltransitionimmaturehelpunderstandingregulationleadingproceduresmodulatestartSinceinfluenceviaunknownmechanismschancesenteringusedtworationscreateRESULTS:MaturingcharacterizedcellssingleundifferentiatedPituitarydatasuggestGnrhreceptorgonadotropincirculatingTranscriptionalincludedbroadvarietysignalingTgfβWntinsulin/IgfnuclearreceptorsalsoactivationprotectionFeedloweredplasmareceivingfullrationgroupfullyfedprominentlyMoreoverspecificallyincludingcarbonpathwayrelevantnucleotidebiosynthesisplacingepigeneticmarksCONCLUSIONS:Undifferentiatedpopulationsbeginningassociatedknownstemstrongercommonmaturation-associatedspecificanotherlatteropenedregulatoryand/oroptionsinitiatingmeansreducehoweverseemsunsuitableinitiationbringslargetesticularmodulatedenergystatusAndrogensNutritionPubertySpermatogenesisTestisTranscriptomics

Similar Articles

Cited By