Targeting Mitochondrial Proline Dehydrogenase with a Suicide Inhibitor to Exploit Synthetic Lethal Interactions with p53 Upregulation and Glutaminase Inhibition.

Gary K Scott, Christina Yau, Beatrice C Becker, Sana Khateeb, Sophia Mahoney, Martin Borch Jensen, Byron Hann, Bryan J Cowen, Scott D Pegan, Christopher C Benz
Author Information
  1. Gary K Scott: Buck Institute for Research on Aging, Novato, California.
  2. Christina Yau: Buck Institute for Research on Aging, Novato, California.
  3. Beatrice C Becker: Buck Institute for Research on Aging, Novato, California.
  4. Sana Khateeb: Buck Institute for Research on Aging, Novato, California.
  5. Sophia Mahoney: Buck Institute for Research on Aging, Novato, California.
  6. Martin Borch Jensen: Buck Institute for Research on Aging, Novato, California.
  7. Byron Hann: Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, California. ORCID
  8. Bryan J Cowen: Department of Chemistry and Biochemistry, University of Denver, Denver, Colorado.
  9. Scott D Pegan: Center for Drug Discovery, College of Pharmacy, University of Georgia, Athens, Georgia.
  10. Christopher C Benz: Buck Institute for Research on Aging, Novato, California. cbenz@buckinstitute.org.

Abstract

Proline dehydrogenase (PRODH) is a p53-inducible inner mitochondrial membrane flavoprotein linked to electron transport for anaplerotic glutamate and ATP production, most critical for cancer cell survival under microenvironmental stress conditions. Proposing that PRODH is a unique mitochondrial cancer target, we structurally model and compare its cancer cell activity and consequences upon exposure to either a reversible (-5-oxo: -5-oxo-2-tetrahydrofurancarboxylic acid) or irreversible (-PPG: -propargylglycine) PRODH inhibitor. Unlike 5-oxo, the suicide inhibitor -PPG induces early and selective decay of PRODH protein without triggering mitochondrial destruction, consistent with -PPG activation of the mitochondrial unfolded protein response. Fly and breast tumor (MCF7)-xenografted mouse studies indicate that -PPG doses sufficient to phenocopy PRODH knockout and induce its decay can be safely and effectively administered Among breast cancer cell lines and tumor samples, PRODH mRNA expression is subtype dependent and inversely correlated with glutaminase (GLS1) expression; combining inhibitors of PRODH (-5-oxo and -PPG) and GLS1 (CB-839) produces additive if not synergistic loss of cancer cell (ZR-75-1, MCF7, DU4475, and BT474) growth and viability. Although PRODH knockdown alone can induce cancer cell apoptosis, the anticancer potential of either reversible or irreversible PRODH inhibitors is strongly enhanced when p53 is simultaneously upregulated by an MDM2 antagonist (MI-63 and nutlin-3). However, maximum anticancer synergy is observed when the PRODH suicide inhibitor, -PPG, is combined with both GLS1-inhibiting and a p53-upregulating MDM2 antagonist. These findings provide preclinical rationale for the development of -PPG-like PRODH inhibitors as cancer therapeutics to exploit synthetic lethal interactions with p53 upregulation and GLS1 inhibition.

References

  1. Nat Commun. 2017 May 11;8:15267 [PMID: 28492237]
  2. Cancer Res. 2012 Jul 15;72(14):3677-86 [PMID: 22609800]
  3. Nature. 2012 Oct 4;490(7418):61-70 [PMID: 23000897]
  4. Chemistry. 2008;14(20):6173-83 [PMID: 18494020]
  5. FEBS J. 2017 Sep;284(18):3029-3049 [PMID: 28710792]
  6. Sci Rep. 2018 Feb 5;8(1):2410 [PMID: 29402901]
  7. Redox Biol. 2014 Jul 18;2:901-9 [PMID: 25184115]
  8. Autophagy. 2012 Sep;8(9):1407-9 [PMID: 22885468]
  9. Front Biosci (Landmark Ed). 2012 Jan 01;17(2):607-20 [PMID: 22201764]
  10. J Cell Biochem. 2009 Jul 1;107(4):759-68 [PMID: 19415679]
  11. Cell. 2014 Aug 14;158(4):929-944 [PMID: 25109877]
  12. Curr Protoc Bioinformatics. 2016 Jun 20;54:5.6.1-5.6.37 [PMID: 27322406]
  13. Mol Cancer Ther. 2014 Apr;13(4):890-901 [PMID: 24523301]
  14. Cell. 2011 Mar 4;144(5):646-74 [PMID: 21376230]
  15. Protein Eng Des Sel. 2018 Jan 1;31(1):17-28 [PMID: 29301020]
  16. J Insect Physiol. 1976;22(2):309-13 [PMID: 1249439]
  17. BMC Biol. 2018 Jul 26;16(1):81 [PMID: 30049264]
  18. Biochim Biophys Acta. 1993 Sep 3;1202(1):77-81 [PMID: 8373828]
  19. Breast Cancer Res Treat. 2014 Apr;144(2):287-298 [PMID: 24562770]
  20. J Med Chem. 2005 Dec 29;48(26):8148-54 [PMID: 16366596]
  21. Proc Natl Acad Sci U S A. 1993 Apr 1;90(7):2979-83 [PMID: 8096642]
  22. Nat Rev Clin Oncol. 2017 Jan;14(1):11-31 [PMID: 27141887]
  23. Biochemistry. 2012 Dec 18;51(50):10099-108 [PMID: 23151026]
  24. Front Oncol. 2012 Jun 21;2:60 [PMID: 22737668]
  25. J Biol Chem. 2016 Nov 11;291(46):24065-24075 [PMID: 27679491]
  26. Cell Chem Biol. 2017 May 18;24(5):614-623.e6 [PMID: 28457707]
  27. Curr Opin Cell Biol. 2015 Apr;33:95-101 [PMID: 25697963]
  28. Proc Natl Acad Sci U S A. 2012 Jun 5;109(23):8983-8 [PMID: 22615405]
  29. Methods Mol Biol. 2017;1654:39-54 [PMID: 28986782]
  30. Nature. 1997 Sep 18;389(6648):300-5 [PMID: 9305847]
  31. Proc Natl Acad Sci U S A. 2008 Mar 11;105(10):3933-8 [PMID: 18316739]
  32. Curr Opin Oncol. 2018 Sep;30(5):338-344 [PMID: 29994904]
  33. J Clin Invest. 2011 Apr;121(4):1349-60 [PMID: 21364280]
  34. Sci Rep. 2016 Feb 12;6:21010 [PMID: 26867799]
  35. Oncotarget. 2016 Oct 18;8(48):83432-83445 [PMID: 29137354]
  36. Cancer Res. 2001 Mar 1;61(5):1810-5 [PMID: 11280728]
  37. Cancer Cell. 2006 Dec;10(6):515-27 [PMID: 17157791]
  38. Cell Metab. 2014 Aug 5;20(2):214-25 [PMID: 24930971]
  39. Protein Expr Purif. 2012 Apr;82(2):345-51 [PMID: 22333530]
  40. Nat Struct Biol. 2003 Feb;10(2):109-14 [PMID: 12514740]
  41. Biochemistry. 2010 Jan 26;49(3):560-9 [PMID: 19994913]
  42. Nat Rev Cancer. 2016 Oct;16(10):619-34 [PMID: 27492215]
  43. Biochemistry. 2008 May 20;47(20):5573-80 [PMID: 18426222]
  44. Biochemistry. 2018 Jun 26;57(25):3433-3444 [PMID: 29648801]
  45. Cancer Res. 2010 May 1;70(9):3709-17 [PMID: 20406983]
  46. Drug Discov Today. 2014 Apr;19(4):450-7 [PMID: 24140288]
  47. Biochemistry. 2004 Oct 5;43(39):12539-48 [PMID: 15449943]

Grants

  1. K99 AG056680/NIA NIH HHS
  2. U24 CA143858/NCI NIH HHS

MeSH Term

Animals
Binding Sites
Cell Line, Tumor
Enzyme Activation
Glutaminase
Humans
Mice
Mitochondria
Models, Molecular
Molecular Structure
Proline Oxidase
Protein Binding
Structure-Activity Relationship
Synthetic Lethal Mutations
Transcriptional Activation
Tumor Suppressor Protein p53
Unfolded Protein Response

Chemicals

Tumor Suppressor Protein p53
Proline Oxidase
Glutaminase

Word Cloud

Created with Highcharts 10.0.0PRODHcancercell-PPGmitochondrialinhibitorGLS1inhibitorsp53ProlineeitherreversibleirreversiblesuicidedecayproteinbreasttumorMCF7inducecanexpressionanticancerMDM2antagonistdehydrogenasep53-inducibleinnermembraneflavoproteinlinkedelectrontransportanapleroticglutamateATPproductioncriticalsurvivalmicroenvironmentalstressconditionsProposinguniquetargetstructurallymodelcompareactivityconsequencesuponexposure-5-oxo:-5-oxo-2-tetrahydrofurancarboxylicacid-PPG:-propargylglycineUnlike5-oxoinducesearlyselectivewithouttriggeringdestructionconsistentactivationunfoldedresponseFly-xenograftedmousestudiesindicatedosessufficientphenocopyknockoutsafelyeffectivelyadministeredAmonglinessamplesmRNAsubtypedependentinverselycorrelatedglutaminasecombining-5-oxoCB-839producesadditivesynergisticlossZR-75-1DU4475BT474growthviabilityAlthoughknockdownaloneapoptosispotentialstronglyenhancedsimultaneouslyupregulatedMI-63nutlin-3HowevermaximumsynergyobservedcombinedGLS1-inhibitingp53-upregulatingfindingsprovidepreclinicalrationaledevelopment-PPG-liketherapeuticsexploitsyntheticlethalinteractionsupregulationinhibitionTargetingMitochondrialDehydrogenaseSuicideInhibitorExploitSyntheticLethalInteractionsUpregulationGlutaminaseInhibition

Similar Articles

Cited By