Gray Matter Correlates of Creativity in Musical Improvisation.

Cameron Arkin, Emily Przysinda, Charles W Pfeifer, Tima Zeng, Psyche Loui
Author Information
  1. Cameron Arkin: Department of Psychology, Wesleyan University, Middletown, CT, United States.
  2. Emily Przysinda: Department of Medicine, University of Rochester, Rochester, NY, United States.
  3. Charles W Pfeifer: Department of Medicine, University of Rochester, Rochester, NY, United States.
  4. Tima Zeng: Department of Psychology, University of Pennsylvania, Philadelphia, PA, United States.
  5. Psyche Loui: Department of Music, Northeastern University, Boston, MA, United States.

Abstract

Creativity has been defined as requiring both novelty and effectiveness, but little is known about how this standard definition applies in music. Here, we present results from a pilot study in which we combine behavioral testing in musical improvisation and structural neuroimaging to relate brain structure to performance in a creative musical improvisation task. Thirty-eight subjects completed a novel improvisation continuation task and underwent T1 MRI. Recorded performances were rated by expert jazz instructors for creativity. Voxel-based morphometric analyses on T1 data showed that creativity ratings were negatively associated with gray matter volume in the right inferior temporal gyrus and bilateral hippocampus. The duration of improvisation training, which was significantly correlated with creativity ratings, was negatively associated with gray matter volume in the rolandic operculum. Together, results show that musical improvisation ability and training are associated with gray matter volume in regions that are previously linked to learning and memory formation, perceptual categorization, and sensory integration. The present study takes a first step towards understanding the neuroanatomical basis of musical creativity by relating creative musical improvisation to individual differences in gray matter structure.

Keywords

Associated Data

figshare | 10.6084/m9.figshare.6590489.v1

References

  1. Proc Natl Acad Sci U S A. 1999 Mar 30;96(7):4034-9 [PMID: 10097158]
  2. Proc Natl Acad Sci U S A. 1999 Aug 3;96(16):9379-84 [PMID: 10430951]
  3. Neuroimage. 2000 Jun;11(6 Pt 1):805-21 [PMID: 10860804]
  4. Ann N Y Acad Sci. 2001 Jun;930:281-99 [PMID: 11458836]
  5. Science. 2001 Sep 28;293(5539):2470-3 [PMID: 11577239]
  6. Neuroimage. 2002 Jan;15(1):273-89 [PMID: 11771995]
  7. Psychol Rev. 1960 Nov;67:380-400 [PMID: 13690223]
  8. Nat Rev Neurosci. 2003 Oct;4(10):829-39 [PMID: 14523382]
  9. Ann N Y Acad Sci. 2003 Nov;999:438-50 [PMID: 14681168]
  10. Am Psychol. 1950 Sep;5(9):444-54 [PMID: 14771441]
  11. J Neurophysiol. 2005 Jan;93(1):603-8 [PMID: 15295012]
  12. Brain Res Cogn Brain Res. 2005 Mar;22(3):457-69 [PMID: 15722215]
  13. Nat Neurosci. 2005 Sep;8(9):1148-50 [PMID: 16116456]
  14. J Cogn Neurosci. 2007 May;19(5):830-42 [PMID: 17488207]
  15. Neuron. 2007 Aug 2;55(3):507-20 [PMID: 17678861]
  16. Trends Cogn Sci. 2008 Mar;12(3):99-105 [PMID: 18262825]
  17. PLoS One. 2008 Feb 27;3(2):e1679 [PMID: 18301756]
  18. Neuroimage. 2008 Jun;41(2):535-43 [PMID: 18420426]
  19. Curr Biol. 2008 Apr 22;18(8):R331-2 [PMID: 18430629]
  20. Brain Lang. 2009 May-Jun;109(2-3):124-32 [PMID: 18471869]
  21. Neuroimage. 2009 Jul 1;46(3):600-7 [PMID: 19264144]
  22. Ann N Y Acad Sci. 2009 Jul;1169:143-50 [PMID: 19673770]
  23. Hum Brain Mapp. 2010 Mar;31(3):398-409 [PMID: 19722171]
  24. Neuroimage. 2010 Jun;51(2):578-85 [PMID: 20226253]
  25. Cereb Cortex. 2012 Mar;22(3):650-8 [PMID: 21680844]
  26. Front Psychol. 2011 Jul 07;2:156 [PMID: 21779271]
  27. Neuroimage. 2012 Jan 2;59(1):772-80 [PMID: 21782960]
  28. Neuroimage. 2012 Aug 15;62(2):782-90 [PMID: 21979382]
  29. Neuron. 2011 Dec 22;72(6):931-7 [PMID: 22196329]
  30. Neuropsychologia. 2012 Jun;50(7):1432-43 [PMID: 22414595]
  31. Cereb Cortex. 2013 Sep;23(9):2213-24 [PMID: 22832388]
  32. Neuron. 2012 Nov 8;76(3):486-502 [PMID: 23141061]
  33. Sci Rep. 2012;2:834 [PMID: 23155479]
  34. Hippocampus. 2013 Jul;23(7):552-8 [PMID: 23519979]
  35. Cortex. 2013 Nov-Dec;49(10):2812-21 [PMID: 23628644]
  36. Front Psychol. 2013 Sep 23;4:636 [PMID: 24069009]
  37. World Neurosurg. 2014 Mar-Apr;81(3-4):651.e1-7 [PMID: 24076057]
  38. World Neurosurg. 2014 Mar-Apr;81(3-4):508-10 [PMID: 24113275]
  39. PLoS One. 2014 Feb 19;9(2):e88665 [PMID: 24586366]
  40. J Neurosci. 2014 Apr 30;34(18):6156-63 [PMID: 24790186]
  41. J Neurosci. 2014 Jun 25;34(26):8837-44 [PMID: 24966383]
  42. Neuroimage. 2014 Nov 1;101:380-9 [PMID: 25064665]
  43. Neuroimage. 2014 Nov 15;102 Pt 2:474-83 [PMID: 25123973]
  44. Brain Struct Funct. 2016 Jan;221(1):331-44 [PMID: 25413573]
  45. Neurosci Biobehav Rev. 2015 Apr;51:108-17 [PMID: 25601088]
  46. Prog Brain Res. 2015;217:37-55 [PMID: 25725909]
  47. Front Psychol. 2015 May 11;6:614 [PMID: 26029147]
  48. Cereb Cortex. 2016 Jul;26(7):3052-63 [PMID: 26088973]
  49. Sci Rep. 2016 Jan 04;6:18460 [PMID: 26725925]
  50. Nat Rev Neurosci. 2016 Mar;17(3):173-82 [PMID: 26865022]
  51. Sci Rep. 2016 Feb 18;6:20482 [PMID: 26888383]
  52. Neuroimage. 2016 Jun;133:477-483 [PMID: 27034024]
  53. Nat Rev Neurosci. 2016 Nov;17(11):718-731 [PMID: 27654862]
  54. Brain Res. 2017 Feb 15;1657:62-73 [PMID: 27923638]
  55. Cereb Cortex. 2018 Apr 1;28(4):1209-1218 [PMID: 28203797]
  56. Sci Rep. 2017 Feb 21;7:42911 [PMID: 28220826]
  57. Neuropsychologia. 2017 May;99:246-258 [PMID: 28322906]
  58. J Affect Disord. 2017 Jun;215:218-224 [PMID: 28340448]
  59. Eur J Neurosci. 2017 May;45(10):1300-1312 [PMID: 28370498]
  60. Brain Cogn. 2017 Aug;116:40-46 [PMID: 28618361]
  61. Neuroimage. 2017 Dec;163:177-182 [PMID: 28916178]
  62. Brain Cogn. 2017 Dec;119:45-53 [PMID: 29028508]
  63. Neuroimage. 2018 Apr 1;169:383-394 [PMID: 29277649]
  64. Hum Brain Mapp. 2018 May;39(5):2098-2110 [PMID: 29400420]
  65. Ann N Y Acad Sci. 2018 Mar 25;:null [PMID: 29577331]

Word Cloud

Created with Highcharts 10.0.0improvisationmusicalcreativitygraymatterassociatedvolumeCreativitymusicpresentresultsstudystructurecreativetaskT1ratingsnegativelytrainingdefinedrequiringnoveltyeffectivenesslittleknownstandarddefinitionappliespilotcombinebehavioraltestingstructuralneuroimagingrelatebrainperformanceThirty-eightsubjectscompletednovelcontinuationunderwentMRIRecordedperformancesratedexpertjazzinstructorsVoxel-basedmorphometricanalysesdatashowedrightinferiortemporalgyrusbilateralhippocampusdurationsignificantlycorrelatedrolandicoperculumTogethershowabilityregionspreviouslylinkedlearningmemoryformationperceptualcategorizationsensoryintegrationtakesfirststeptowardsunderstandingneuroanatomicalbasisrelatingindividualdifferencesGrayMatterCorrelatesMusicalImprovisationVBM

Similar Articles

Cited By (6)