Stroke Induces a BDNF-Dependent Improvement in Cognitive Flexibility in Aged Mice.

Josh Houlton, Lisa Y Y Zhou, Deanna Barwick, Emma K Gowing, Andrew N Clarkson
Author Information
  1. Josh Houlton: Department of Anatomy, Brain Health Research Centre and Brain Research New Zealand, University of Otago, Dunedin 9054, New Zealand.
  2. Lisa Y Y Zhou: Department of Anatomy, Brain Health Research Centre and Brain Research New Zealand, University of Otago, Dunedin 9054, New Zealand.
  3. Deanna Barwick: Department of Anatomy, Brain Health Research Centre and Brain Research New Zealand, University of Otago, Dunedin 9054, New Zealand.
  4. Emma K Gowing: Department of Anatomy, Brain Health Research Centre and Brain Research New Zealand, University of Otago, Dunedin 9054, New Zealand.
  5. Andrew N Clarkson: Department of Anatomy, Brain Health Research Centre and Brain Research New Zealand, University of Otago, Dunedin 9054, New Zealand. ORCID

Abstract

Stroke remains a leading cause of disability worldwide. Recently, we have established an animal model of stroke that results in delayed impairment in spatial memory, allowing us to better investigate cognitive deficits. Young and aged brains show different recovery profiles after stroke; therefore, we assessed aged-related differences in poststroke cognition. As neurotrophic support diminishes with age, we also investigated the involvement of brain-derived neurotrophic factor (BDNF) in these differences. Young (3-6 months old) and aged (16-21 months old) mice were trained in operant touchscreen chambers to complete a visual pairwise discrimination (VD) task. Stroke or sham surgery was induced using the photothrombotic model to induce a bilateral prefrontal cortex stroke. Five days poststroke, an additional cohort of aged stroke animals were treated with intracerebral hydrogels loaded with the BDNF decoy, TrkB-Fc. Following treatment, animals underwent the reversal and rereversal task to identify stroke-induced cognitive deficits at days 17 and 37 poststroke, respectively. Assessment of sham animals using Cox regression and log-rank analyses showed aged mice exhibit an increased impairment on VD reversal and rereversal learning compared to young controls. Stroke to young mice revealed no impairment on either task. In contrast, stroke to aged mice facilitated a significant improvement in reversal learning, which was dampened in the presence of the BDNF decoy, TrkB-Fc. In addition, aged stroke control animals required significantly less consecutive days and correction trials to master the reversal task, relative to aged shams, an effect dampened by TrkB-Fc. Our findings support age-related differences in recovery of cognitive function after stroke. Interestingly, aged stroke animals outperformed their sham counterparts, suggesting reopening of a critical window for recovery that is being mediated by BDNF.

References

  1. Behav Brain Res. 2007 Aug 22;182(1):57-66 [PMID: 17590450]
  2. Stroke. 2003 Oct;34(10):2440-4 [PMID: 14512580]
  3. Science. 1996 Jun 21;272(5269):1791-4 [PMID: 8650578]
  4. Arch Phys Med Rehabil. 2007 Feb;88(2):173-80 [PMID: 17270514]
  5. Exp Neurol. 2000 Jan;161(1):392-6 [PMID: 10683304]
  6. Behav Brain Res. 2013 Feb 1;238:211-26 [PMID: 23103326]
  7. Neuroscience. 2011 Dec 29;199:284-91 [PMID: 21854836]
  8. Int J Mol Sci. 2018 Nov 28;19(12): [PMID: 30486515]
  9. J Cereb Blood Flow Metab. 2015 Aug;35(8):1272-9 [PMID: 25757752]
  10. Neurorehabil Neural Repair. 2010 Oct;24(8):722-9 [PMID: 20460494]
  11. Lancet Neurol. 2005 Nov;4(11):752-9 [PMID: 16239182]
  12. Brain Res Dev Brain Res. 2002 Dec 15;139(2):139-50 [PMID: 12480128]
  13. Nat Protoc. 2013 Oct;8(10):1985-2005 [PMID: 24051960]
  14. NeuroRehabilitation. 2014;34(1):209-13 [PMID: 24284463]
  15. Stroke. 2005 Apr;36(4):847-52 [PMID: 15746452]
  16. J Cereb Blood Flow Metab. 2017 Mar;37(3):1030-1045 [PMID: 27174996]
  17. Nat Neurosci. 2013 Jan;16(1):16-24 [PMID: 23201973]
  18. Neurobiol Aging. 2007 Jul;28(7):1088-98 [PMID: 16769156]
  19. Neuroscience. 2007 May 25;146(3):962-73 [PMID: 17391859]
  20. J Neurosci. 2014 May 21;34(21):7302-13 [PMID: 24849362]
  21. J Cogn Neurosci. 2004 Apr;16(3):463-78 [PMID: 15072681]
  22. Neuropharmacology. 2017 May 1;117:219-226 [PMID: 28196627]
  23. J Clin Invest. 2010 Feb;120(2):433-45 [PMID: 20071773]
  24. Behav Brain Res. 2011 Aug 10;221(2):555-63 [PMID: 21145918]
  25. Stroke. 1992 Sep;23(9):1225-9 [PMID: 1519275]
  26. Behav Brain Res. 2014 Aug 15;270:47-55 [PMID: 24815214]
  27. Behav Brain Res. 2015 Oct 15;293:54-61 [PMID: 26166190]
  28. Int J Stroke. 2017 Jul;12(5):462-471 [PMID: 28697710]
  29. Behav Brain Res. 2014 Jan 1;258:106-11 [PMID: 24144544]
  30. Stroke. 2013 Sep;44(9):2579-86 [PMID: 23868277]
  31. Neuroscience. 2017 Mar 14;345:274-286 [PMID: 26873002]
  32. J Gerontol. 1979 Mar;34(2):209-19 [PMID: 108323]
  33. Biol Psychiatry. 2005 Mar 1;57(5):549-58 [PMID: 15737671]
  34. J Neurosci. 2000 Jan 15;20(2):771-82 [PMID: 10632606]
  35. Neuron. 2005 Apr 21;46(2):173-9 [PMID: 15848797]
  36. J Neurosci. 2003 Nov 26;23(34):10913-22 [PMID: 14645487]
  37. Curr Neurovasc Res. 2007 Aug;4(3):216-27 [PMID: 17691975]
  38. Behav Brain Res. 2016 Jan 1;296:373-378 [PMID: 26306825]
  39. J Stroke Cerebrovasc Dis. 2015 Aug;24(8):1823-31 [PMID: 25997979]
  40. Cogn Psychol. 2000 Aug;41(1):49-100 [PMID: 10945922]
  41. Stroke. 2013 Jan;44(1):138-45 [PMID: 23150656]
  42. Stroke. 2009 Apr;40(4):1490-5 [PMID: 19164786]
  43. Epilepsy Res. 2001 Dec;47(3):189-203 [PMID: 11738927]
  44. Exp Neurol. 2015 Oct;272:109-19 [PMID: 25836044]
  45. Sci Rep. 2015 Oct 01;5:14613 [PMID: 26423861]
  46. Neuropharmacology. 2012 Mar;62(3):1168-74 [PMID: 21439304]
  47. Mech Ageing Dev. 2002 Apr;123(7):811-7 [PMID: 11869738]
  48. Behav Brain Res. 2008 Jun 26;190(1):85-96 [PMID: 18359099]
  49. Annu Rev Neurosci. 2001;24:167-202 [PMID: 11283309]
  50. Brain Res. 1992 Mar 20;575(2):238-46 [PMID: 1571783]
  51. Neurorehabil Neural Repair. 2011 Oct;25(8):740-8 [PMID: 21705652]
  52. Nat Neurosci. 2011 Nov 06;14(12):1507-9 [PMID: 22057192]
  53. Nat Neurosci. 2005 Oct;8(10):1298-300 [PMID: 16158065]
  54. J Neurosci. 1999 Mar 15;19(6):2069-80 [PMID: 10066260]
  55. Stroke. 1994 Apr;25(4):808-13 [PMID: 8160225]
  56. Mol Cell Neurosci. 2009 Oct;42(2):81-9 [PMID: 19577647]
  57. Expert Rev Neurother. 2014 Nov;14(11):1335-44 [PMID: 25319267]
  58. Nat Rev Dis Primers. 2018 Feb 15;4:18003 [PMID: 29446769]
  59. Behav Neurosci. 1997 Oct;111(5):920-36 [PMID: 9383514]
  60. Ageing Res Rev. 2011 Jan;10(1):71-9 [PMID: 19900590]
  61. Lancet. 2014 Jan 18;383(9913):245-54 [PMID: 24449944]
  62. Int J Stroke. 2009 Aug;4(4):285-92 [PMID: 19689757]
  63. J Can Acad Child Adolesc Psychiatry. 2011 Nov;20(4):265-76 [PMID: 22114608]
  64. Postgrad Med J. 2006 Feb;82(964):84-8 [PMID: 16461469]
  65. Trends Cardiovasc Med. 2007 May;17(4):140-3 [PMID: 17482097]
  66. J Neurosci. 2013 Feb 27;33(9):4105-9 [PMID: 23447618]
  67. Aging Cell. 2017 Aug;16(4):634-643 [PMID: 28497576]
  68. Nat Clin Pract Neurol. 2008 Feb;4(2):76-85 [PMID: 18256679]
  69. Behav Brain Res. 2008 Mar 5;187(2):405-10 [PMID: 18022704]
  70. J Neurosci. 2011 Mar 9;31(10):3766-75 [PMID: 21389231]
  71. J Cereb Blood Flow Metab. 2019 Jul;39(7):1266-1282 [PMID: 29376464]
  72. Nat Neurosci. 2010 Dec;13(12):1496-504 [PMID: 21057507]
  73. Nat Protoc. 2013 Oct;8(10):1961-84 [PMID: 24051959]
  74. Stroke. 2007 Jul;38(7):2165-72 [PMID: 17510456]

MeSH Term

Animals
Cognition
Discrimination Learning
Disease Models, Animal
Male
Mice
Receptor, trkB
Recovery of Function
Reversal Learning
Stroke

Chemicals

Receptor, trkB

Word Cloud

Created with Highcharts 10.0.0strokeagedanimalsStrokeBDNFmicetaskreversalimpairmentcognitiverecoverydifferencespoststrokeshamdaysTrkB-FcmodeldeficitsYoungneurotrophicsupportmonthsoldVDusingdecoyrereversallearningyoungdampenedremainsleadingcausedisabilityworldwideRecentlyestablishedanimalresultsdelayedspatialmemoryallowingusbetterinvestigatebrainsshowdifferentprofilesthereforeassessedaged-relatedcognitiondiminishesagealsoinvestigatedinvolvementbrain-derivedfactor3-616-21trainedoperanttouchscreenchamberscompletevisualpairwisediscriminationsurgeryinducedphotothromboticinducebilateralprefrontalcortexFiveadditionalcohorttreatedintracerebralhydrogelsloadedFollowingtreatmentunderwentidentifystroke-induced1737respectivelyAssessmentCoxregressionlog-rankanalysesshowedexhibitincreasedcomparedcontrolsrevealedeithercontrastfacilitatedsignificantimprovementpresenceadditioncontrolrequiredsignificantlylessconsecutivecorrectiontrialsmasterrelativeshamseffectfindingsage-relatedfunctionInterestinglyoutperformedcounterpartssuggestingreopeningcriticalwindowmediatedInducesBDNF-DependentImprovementCognitiveFlexibilityAgedMice

Similar Articles

Cited By