Impact hotspots of reduced nutrient discharge shift across the globe with population and dietary changes.

Xu Wang, Glen Daigger, Wim de Vries, Carolien Kroeze, Min Yang, Nan-Qi Ren, Junxin Liu, David Butler
Author Information
  1. Xu Wang: Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, 100085, Beijing, China. xuwang@rcees.ac.cn. ORCID
  2. Glen Daigger: Department of Civil and Environmental Engineering, University of Michigan, Ann Arbor, MI, 48109, United States.
  3. Wim de Vries: Wageningen Environmental Research, Wageningen University & Research, 6700 AA, Wageningen, Netherlands.
  4. Carolien Kroeze: Water Systems and Global Change Group, Wageningen University & Research, 6700 AA, Wageningen, Netherlands.
  5. Min Yang: State Key Joint Laboratory of Environment Simulation and Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, 100085, Beijing, China.
  6. Nan-Qi Ren: State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, 150090, Harbin, China.
  7. Junxin Liu: Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, 100085, Beijing, China.
  8. David Butler: Centre for Water Systems, College of Engineering, Mathematics and Physical Sciences, University of Exeter, Exeter, EX4 4QF, United Kingdom. ORCID

Abstract

Reducing nutrient discharge from wastewater is essential to mitigating aquatic eutrophication; however, energy- and chemicals-intensive nutrient removal processes, accompanied with the emissions of airborne contaminants, can create other, unexpected, environmental consequences. Implementing mitigation strategies requires a complete understanding of the effects of nutrient control practices, given spatial and temporal variations. Here we simulate the environmental impacts of reducing nutrient discharge from domestic wastewater in 173 countries during 1990-2050. We find that improvements in wastewater infrastructure achieve a large-scale decline in nutrient input to surface waters, but this is causing detrimental effects on the atmosphere and the broader environment. Population size and dietary protein intake have the most significant effects over all the impacts arising from reduction of wastewater nutrients. Wastewater-related impact hotspots are also shifting from Asia to Africa, suggesting a need for interventions in such countries, mostly with growing populations, rising dietary intake, rapid urbanisation, and inadequate sanitation.

References

  1. Environ Sci Technol. 2017 Jul 18;51(14):7749-7758 [PMID: 28534608]
  2. Proc Natl Acad Sci U S A. 2013 Feb 5;110(6):2052-7 [PMID: 23341613]
  3. Proc Natl Acad Sci U S A. 2015 Feb 3;112(5):1630-5 [PMID: 25605884]
  4. Environ Sci Technol. 2017 Sep 19;51(18):10765-10776 [PMID: 28875704]
  5. Science. 2008 May 16;320(5878):889-92 [PMID: 18487183]
  6. Environ Health Perspect. 2013 May;121(5):521-30 [PMID: 23518813]
  7. Appl Microbiol Biotechnol. 2017 Feb;101(4):1365-1383 [PMID: 28084538]
  8. Environ Sci Technol. 2018 Apr 3;52(7):3835-3841 [PMID: 29510030]
  9. Environ Int. 2005 Apr;31(3):433-44 [PMID: 15734195]
  10. Science. 2015 Feb 27;347(6225):1258832 [PMID: 25722418]
  11. Environ Sci Technol. 2015 Jul 21;49(14):8611-22 [PMID: 26121005]
  12. Int J Environ Res Public Health. 2014 Aug 11;11(8):8137-65 [PMID: 25116635]
  13. Science. 2015 Feb 13;347(6223):1259855 [PMID: 25592418]
  14. Sci Total Environ. 2017 Jan 15;576:264-272 [PMID: 27788441]
  15. Nat Ecol Evol. 2017 Nov;1(11):1625-1634 [PMID: 29066813]
  16. Proc Natl Acad Sci U S A. 2013 Jul 16;110(29):11911-6 [PMID: 23818582]
  17. Environ Sci Technol. 2017 May 2;51(9):4735-4737 [PMID: 28436645]
  18. Nature. 2014 Nov 27;515(7528):518-22 [PMID: 25383533]
  19. Nature. 2017 Jan 19;541(7637):386-389 [PMID: 28002400]
  20. Proc Natl Acad Sci U S A. 2015 Jul 14;112(28):8792-7 [PMID: 26124118]
  21. Environ Sci Technol. 2017 Sep 19;51(18):10274-10281 [PMID: 28742338]
  22. Nature. 2015 Dec 3;528(7580):29-31 [PMID: 26632573]
  23. Water Res. 2015 May 1;74:166-79 [PMID: 25727156]
  24. BMC Public Health. 2016 Feb 04;16:120 [PMID: 26846125]
  25. Water Res. 2008 Jan;42(1-2):338-46 [PMID: 17707877]
  26. Water Res. 2015 Dec 15;87:522-30 [PMID: 26152903]
  27. Sci Adv. 2018 Aug 01;4(8):eaaq0210 [PMID: 30083599]
  28. Environ Sci Technol. 2018 Aug 7;52(15):8965-8976 [PMID: 29965740]
  29. Water Res. 2010 Mar;44(5):1654-66 [PMID: 20022351]
  30. Proc Biol Sci. 2016 Feb 10;283(1824): [PMID: 26865306]
  31. Nature. 2009 Sep 24;461(7263):472-5 [PMID: 19779433]
  32. Environ Sci Technol. 2015 Oct 6;49(19):11604-11 [PMID: 26320879]
  33. Environ Manage. 2009 Aug;44(2):205-17 [PMID: 19458999]
  34. Philos Trans R Soc Lond B Biol Sci. 2010 Sep 27;365(1554):2793-807 [PMID: 20713385]
  35. Science. 2016 May 20;352(6288):928-33 [PMID: 27199414]
  36. Sci Total Environ. 2008 Feb 1;390(1):227-40 [PMID: 17996278]
  37. Science. 2014 Jun 27;344(6191):1452-3 [PMID: 24970066]
  38. Environ Sci Technol. 2016 Jul 5;50(13):6606-20 [PMID: 27214029]
  39. Nutr Rev. 2017 Jan;75(1):2-17 [PMID: 27974596]
  40. Water Sci Technol. 2015;71(4):468-78 [PMID: 25746636]

Grants

  1. Z171100001117078/Beijing Nova Program
  2. 51408589/National Natural Science Foundation of China (National Science Foundation of China)
  3. 2016041/Youth Innovation Promotion Association of the Chinese Academy of Sciences (Youth Innovation Promotion Association CAS)

MeSH Term

Africa
Asia
Atmosphere
Dietary Proteins
Environmental Monitoring
Eutrophication
Feeding Behavior
Humans
Models, Theoretical
Nutrients
Population Dynamics
Socioeconomic Factors
Urbanization
Wastewater
Water Purification
Water Resources

Chemicals

Dietary Proteins
Waste Water

Word Cloud

Created with Highcharts 10.0.0nutrientwastewaterdischargeeffectsdietaryenvironmentalimpactscountriesintakehotspotsReducingessentialmitigatingaquaticeutrophicationhoweverenergy-chemicals-intensiveremovalprocessesaccompaniedemissionsairbornecontaminantscancreateunexpectedconsequencesImplementingmitigationstrategiesrequirescompleteunderstandingcontrolpracticesgivenspatialtemporal variationssimulatereducingdomestic1731990-2050findimprovementsinfrastructureachievelarge-scaledeclineinputsurfacewaterscausingdetrimentalatmospherebroaderenvironmentPopulationsizeproteinsignificantarisingreductionnutrientsWastewater-relatedimpactalsoshiftingAsiaAfricasuggestingneedinterventionsmostlygrowingpopulationsrisingrapidurbanisationinadequatesanitationImpactreducedshiftacrossglobepopulationchanges

Similar Articles

Cited By