Neonatal Nicotine Exposure Primes Midbrain Neurons to a Dopaminergic Phenotype and Increases Adult Drug Consumption.

Benedetto Romoli, Adrian F Lozada, Ivette M Sandoval, Fredric P Manfredsson, Thomas S Hnasko, Darwin K Berg, Davide Dulcis
Author Information
  1. Benedetto Romoli: Department of Psychiatry, University of California San Diego, La Jolla, California.
  2. Adrian F Lozada: Department of Neurobiology, University of California San Diego, La Jolla, California.
  3. Ivette M Sandoval: Department of Translational Science and Molecular Medicine, Michigan State University, East Lansing, Michigan.
  4. Fredric P Manfredsson: Department of Translational Science and Molecular Medicine, Michigan State University, East Lansing, Michigan.
  5. Thomas S Hnasko: Department of Neuroscience, University of California San Diego, La Jolla, California; Research Service, Veterans Affairs San Diego Healthcare System, San Diego, California.
  6. Darwin K Berg: Department of Neurobiology, University of California San Diego, La Jolla, California.
  7. Davide Dulcis: Department of Psychiatry, University of California San Diego, La Jolla, California. Electronic address: ddulcis@ucsd.edu.

Abstract

BACKGROUND: Nicotine intake induces addiction through neuroplasticity of the reward circuitry, altering the activity of dopaminergic neurons of the ventral tegmental area. Prior work demonstrated that altered circuit activity can change neurotransmitter expression in the developing and adult brain. Here we investigated the effects of neonatal nicotine exposure on the dopaminergic system and nicotine consumption in adulthood.
METHODS: Male and female mice were used for two-bottle-choice test, progressive ratio breakpoint test, immunohistochemistry, RNAscope, quantitative polymerase chain reaction, calcium imaging, and DREADD (designer receptor exclusively activated by designer drugs)-mediated chemogenic activation/inhibition experiments.
RESULTS: Neonatal nicotine exposure potentiates drug preference in adult mice, induces alterations in calcium spike activity of midbrain neurons, and increases the number of dopamine-expressing neurons in the ventral tegmental area. Specifically, glutamatergic neurons are first primed to express transcription factor Nurr1, then acquire the dopaminergic phenotype following nicotine re-exposure in adulthood. Enhanced neuronal activity combined with Nurr1 expression is both necessary and sufficient for the nicotine-mediated neurotransmitter plasticity to occur.
CONCLUSIONS: Our findings illuminate a new mechanism of neuroplasticity by which early nicotine exposure primes the reward system to display increased susceptibility to drug consumption in adulthood.

Keywords

References

  1. Early Hum Dev. 1979 Mar;3(1):79-83 [PMID: 118862]
  2. Brain Res Dev Brain Res. 1991 Nov 19;63(1-2):201-7 [PMID: 1790589]
  3. Biol Psychiatry. 2001 Feb 1;49(3):166-74 [PMID: 11230867]
  4. Neurotoxicol Teratol. 2005 Mar-Apr;27(2):267-77 [PMID: 15734278]
  5. Nature. 2012 Oct 11;490(7419):262-6 [PMID: 23034651]
  6. Nat Rev Neurosci. 2004 Jan;5(1):55-65 [PMID: 14708004]
  7. Neuron. 2010 Mar 11;65(5):643-56 [PMID: 20223200]
  8. Biochem Pharmacol. 2009 Oct 1;78(7):703-11 [PMID: 19481063]
  9. Neuroreport. 1999 Mar 17;10(4):747-51 [PMID: 10208542]
  10. Pediatrics. 1992 Sep;90(3):342-9 [PMID: 1518686]
  11. Prev Med. 2015 Sep;78:92-100 [PMID: 26190366]
  12. Neuron. 2000 Aug;27(2):349-57 [PMID: 10985354]
  13. Pharmacol Ther. 2009 May;122(2):125-39 [PMID: 19268688]
  14. Synapse. 1994 Jan;16(1):36-44 [PMID: 8134899]
  15. J Neurochem. 2007 Dec;103(6):2518-28 [PMID: 17949410]
  16. Arch Gen Psychiatry. 1998 Aug;55(8):721-7 [PMID: 9707383]
  17. Biol Open. 2012 Aug 15;1(8):693-704 [PMID: 23213462]
  18. Genes Brain Behav. 2008 Feb;7(1):78-87 [PMID: 17504244]
  19. Dev Neurobiol. 2012 Apr;72(4):465-74 [PMID: 21595049]
  20. Cell Rep. 2018 May 22;23(8):2236-2244 [PMID: 29791835]
  21. Annu Rev Pharmacol Toxicol. 2007;47:699-729 [PMID: 17009926]
  22. Pharmacol Biochem Behav. 2015 Sep;136:87-101 [PMID: 26219213]
  23. Nature. 2008 Nov 13;456(7219):195-201 [PMID: 19005547]
  24. Neuroscience. 2007 Feb 23;144(4):1347-60 [PMID: 17197101]
  25. J Comp Neurol. 2014 Oct 1;522(14):3308-34 [PMID: 24715505]
  26. Eur J Neurosci. 2015 Dec;42(12):3081-94 [PMID: 26469289]
  27. Brain Behav Immun. 2017 Oct;65:210-221 [PMID: 28495611]
  28. J Neurosci. 2013 Nov 6;33(45):17641-6 [PMID: 24198356]
  29. Nature. 2004 Jun 3;429(6991):523-30 [PMID: 15175743]
  30. J Neurosci. 2009 Dec 16;29(50):15923-32 [PMID: 20016108]
  31. Psychopharmacology (Berl). 1995 Jan;117(1):2-10; discussion 14-20 [PMID: 7724697]
  32. Pharmacol Biochem Behav. 2006 Dec;85(4):835-41 [PMID: 17196635]
  33. Brain Struct Funct. 2015 Sep;220(5):3061-6 [PMID: 25074751]
  34. J Neurosci. 2006 Jan 18;26(3):723-30 [PMID: 16421292]
  35. Int Rev Neurobiol. 2012;102:1-22 [PMID: 22748824]
  36. Neuron. 2017 Sep 13;95(6):1319-1333.e5 [PMID: 28867550]
  37. Neuron. 2001 Dec 6;32(5):855-65 [PMID: 11738031]
  38. Neuropharmacology. 2009;56 Suppl 1:254-62 [PMID: 18692078]
  39. Nat Rev Neurosci. 2009 Apr;10(4):303-12 [PMID: 19277053]
  40. Eur J Neurosci. 2003 Oct;18(7):1731-8 [PMID: 14622207]
  41. Neurotoxicol Teratol. 2010 May-Jun;32(3):336-45 [PMID: 20060465]
  42. Mol Neurobiol. 2019 May;56(5):3393-3403 [PMID: 30121937]
  43. Pediatrics. 2004 Apr;113(4 Suppl):1007-15 [PMID: 15060193]
  44. J Am Acad Child Adolesc Psychiatry. 2001 Jun;40(6):630-41 [PMID: 11392340]
  45. J Neurophysiol. 1999 Feb;81(2):447-54 [PMID: 10036250]
  46. Neurosci Lett. 2014 Jan 24;559:50-5 [PMID: 24291696]
  47. Science. 2013 Apr 26;340(6131):449-53 [PMID: 23620046]
  48. J Clin Invest. 2018 Feb 1;128(2):774-788 [PMID: 29337309]
  49. J Neurosci. 2011 Jan 5;31(1):78-88 [PMID: 21209192]
  50. Neuropharmacology. 2014 Jan;76 Pt B:554-65 [PMID: 23752091]
  51. Front Neurosci. 2015 Nov 05;9:404 [PMID: 26594139]
  52. Pharmacol Biochem Behav. 2006 Nov;85(3):669-74 [PMID: 17196243]
  53. J Chem Neuroanat. 2016 Apr;73:21-32 [PMID: 26718607]
  54. Nat Rev Neurosci. 2002 Dec;3(12):921-31 [PMID: 12461549]
  55. Neuroreport. 2002 May 24;13(7):961-3 [PMID: 12004199]
  56. Neuron. 2016 Dec 21;92(6):1337-1351 [PMID: 27939580]
  57. Nat Commun. 2014 May 21;5:3925 [PMID: 24968237]
  58. EMBO J. 2011 Jan 5;30(1):194-204 [PMID: 21113126]
  59. Nature. 2012 Nov 8;491(7423):212-7 [PMID: 23064228]
  60. J Pharmacol Exp Ther. 2002 Dec;303(3):896-903 [PMID: 12438507]
  61. Acta Pharmacol Sin. 2009 Jun;30(6):673-80 [PMID: 19448647]

Grants

  1. R21 DA047455/NIDA NIH HHS
  2. R01 DA036612/NIDA NIH HHS
  3. R21 DA037455/NIDA NIH HHS
  4. R21 NS098079/NINDS NIH HHS
  5. I01 BX003759/BLRD VA

MeSH Term

Animals
Dopamine
Dopaminergic Neurons
Female
Male
Mesencephalon
Mice
Mice, Inbred C57BL
Neuronal Plasticity
Nicotine
Phenotype
Reward
Ventral Tegmental Area

Chemicals

Nicotine
Dopamine

Word Cloud

Created with Highcharts 10.0.0nicotineactivityneuronsNicotinedopaminergicexposureadulthoodinducesneuroplasticityrewardventraltegmentalareaneurotransmitterexpressionadultsystemconsumptionmicetestcalciumdesignerNeonataldrugNurr1BACKGROUND:intakeaddictioncircuitryalteringPriorworkdemonstratedalteredcircuitcanchangedevelopingbraininvestigatedeffectsneonatalMETHODS:Malefemaleusedtwo-bottle-choiceprogressiveratiobreakpointimmunohistochemistryRNAscopequantitativepolymerasechainreactionimagingDREADDreceptorexclusivelyactivateddrugs-mediatedchemogenicactivation/inhibitionexperimentsRESULTS:potentiatespreferencealterationsspikemidbrainincreasesnumberdopamine-expressingSpecificallyglutamatergicfirstprimedexpresstranscriptionfactoracquirephenotypefollowingre-exposureEnhancedneuronalcombinednecessarysufficientnicotine-mediatedplasticityoccurCONCLUSIONS:findingsilluminatenewmechanismearlyprimesdisplayincreasedsusceptibilityExposurePrimesMidbrainNeuronsDopaminergicPhenotypeIncreasesAdultDrugConsumptionDopamineNeurotransmitter-switchingPlasticityTyrosinehydroxylaseVTA

Similar Articles

Cited By