Protective effect of anisodamine in rats with glycerol-induced acute kidney injury.

Yun-Feng Li, Bing-Yuan Xu, Ran An, Xin-Fang Du, Kun Yu, Jia-Hua Sun, Guo-Hong Zhang, Wei Wang, Li-Ping An, Guang-Li Wu
Author Information
  1. Yun-Feng Li: Hebei Key Laboratory of Chinese Medicine Research on Cardiocerebrovascular Disease, Hebei University of Chinese Medicine, Shijiazhuang, 050200, China.
  2. Bing-Yuan Xu: Hebei Key Laboratory of Chinese Medicine Research on Cardiocerebrovascular Disease, Hebei University of Chinese Medicine, Shijiazhuang, 050200, China.
  3. Ran An: Hebei Key Laboratory of Chinese Medicine Research on Cardiocerebrovascular Disease, Hebei University of Chinese Medicine, Shijiazhuang, 050200, China.
  4. Xin-Fang Du: Department of Nephrology, Bethune International Peace Hospital of PLA, Shijiazhuang, 050082, China.
  5. Kun Yu: Hebei Key Laboratory of Chinese Medicine Research on Cardiocerebrovascular Disease, Hebei University of Chinese Medicine, Shijiazhuang, 050200, China.
  6. Jia-Hua Sun: Hebei Key Laboratory of Chinese Medicine Research on Cardiocerebrovascular Disease, Hebei University of Chinese Medicine, Shijiazhuang, 050200, China.
  7. Guo-Hong Zhang: Hebei Key Laboratory of Chinese Medicine Research on Cardiocerebrovascular Disease, Hebei University of Chinese Medicine, Shijiazhuang, 050200, China.
  8. Wei Wang: Hebei Key Laboratory of Chinese Medicine Research on Cardiocerebrovascular Disease, Hebei University of Chinese Medicine, Shijiazhuang, 050200, China.
  9. Li-Ping An: Hebei Key Laboratory of Chinese Medicine Research on Cardiocerebrovascular Disease, Hebei University of Chinese Medicine, Shijiazhuang, 050200, China.
  10. Guang-Li Wu: Department of Nephrology, Bethune International Peace Hospital of PLA, Shijiazhuang, 050082, China. fengsong117@126.com. ORCID

Abstract

BACKGROUND: anisodamine is used for the treatment of reperfusion injury in various organs. In this study, we investigated the effectiveness and mechanisms of action of anisodamine in promoting recovery from glycerol-induced acute kidney injury (AKI).
METHODS: We compared the protective effects of atropine and anisodamine in the rat model of glycerol-induced AKI. We examined signaling pathways involved in oxidative stress, Inflammation and apoptosis, as well as expression of kidney injury molecule-1 (KIM-1). Renal injury was assessed by measuring serum creatinine and urea, and by histologic analysis. Rhabdomyolysis was evaluated by measuring creatine kinase levels, and oxidative stress was assessed by measuring malondialdehyde (MDA) and superoxide dismutase (SOD) levels in kidney tissues. Inflammation was assessed by quantifying interleukin 6 (IL-6) and CD45 expression. Apoptosis and necrosis were evaluated by measuring caspase-3 (including cleaved caspase 3) and RIP3 levels, respectively.
RESULTS: glycerol administration resulted in a higher mean histologic damage score, as well as increases in serum creatinine, urea, creatine kinase, reactive oxygen species (ROS), MDA, IL-6, caspase-3 and KIM-1 levels. Furthermore, glycerol reduced kidney tissue SOD activity. All of these markers were significantly improved by anisodamine and atropine. However, the mean histologic damage score and levels of urea, serum creatinine, creatine kinase, ROS and IL-6 were lower in the anisodamine treatment group compared with the atropine treatment group.
CONCLUSION: Pretreatment with anisodamine ameliorates renal dysfunction in the rat model of glycerol-induced rhabdomyolytic kidney injury by reducing oxidative stress, the inflammatory response and cell death.

Keywords

References

  1. Intensive Care Med. 2001 May;27(5):803-11 [PMID: 11430535]
  2. Toxicol Appl Pharmacol. 2002 Feb 1;178(3):180-5 [PMID: 11858734]
  3. Am J Physiol Renal Physiol. 2003 Sep;285(3):F451-8 [PMID: 12724130]
  4. Arch Surg. 1992 Oct;127(10):1204-8; discussion 1209 [PMID: 1417486]
  5. Medicine (Baltimore). 2005 Nov;84(6):377-85 [PMID: 16267412]
  6. Curr Med Chem. 2005;12(23):2741-51 [PMID: 16305469]
  7. J Appl Toxicol. 2007 Mar-Apr;27(2):116-21 [PMID: 17186568]
  8. Nephrol Dial Transplant. 2008 Apr;23(4):1135-43 [PMID: 18048419]
  9. Proc Natl Acad Sci U S A. 1991 Nov 1;88(21):9833-7 [PMID: 1946409]
  10. Apoptosis. 2009 Dec;14(12):1451-8 [PMID: 19466552]
  11. Burns. 2010 Mar;36(2):205-11 [PMID: 19836141]
  12. Nephrol Dial Transplant. 2010 May;25(5):1435-43 [PMID: 20037173]
  13. Ren Fail. 2010 Jun;32(5):623-32 [PMID: 20486847]
  14. Kidney Int. 2011 Jan;79(2):169-78 [PMID: 20811331]
  15. Proc Natl Acad Sci U S A. 2010 Dec 14;107(50):21695-700 [PMID: 21098270]
  16. Kidney Int. 2011 Jan;79(2):149-50 [PMID: 21191389]
  17. Am J Physiol Renal Physiol. 2011 Jul;301(1):F162-70 [PMID: 21511696]
  18. Inflamm Allergy Drug Targets. 2011 Aug;10(4):260-71 [PMID: 21539514]
  19. Front Pharmacol. 2011 May 02;2:23 [PMID: 21687515]
  20. Ren Fail. 2011;33(8):811-8 [PMID: 21797820]
  21. J Pharmacol Exp Ther. 2012 Apr;341(1):126-36 [PMID: 22228809]
  22. Int J Microcirc Clin Exp. 1990 Aug;9(3):285-96 [PMID: 2394549]
  23. Afr J Tradit Complement Altern Med. 2013 May 16;10(4):88-93 [PMID: 24146507]
  24. Cytokine. 2014 Mar;66(1):78-86 [PMID: 24548428]
  25. Kidney Int. 2014 Aug;86(2):338-49 [PMID: 24717297]
  26. Mol Cell Biochem. 2014 Aug;393(1-2):123-31 [PMID: 24740757]
  27. Coron Artery Dis. 2014 Dec;25(8):645-52 [PMID: 25230304]
  28. Nat Rev Nephrol. 2015 Feb;11(2):88-101 [PMID: 25331787]
  29. Biomed Res Int. 2014;2014:362024 [PMID: 25478569]
  30. Int J Stroke. 2015 Jul;10(5):737-44 [PMID: 25727643]
  31. Mar Drugs. 2015 Apr 13;13(4):2105-23 [PMID: 25871290]
  32. Kidney Int. 2016 Feb;89(2):399-410 [PMID: 26535995]
  33. Food Funct. 2016 Jul 13;7(7):3091-101 [PMID: 27273121]
  34. Ren Fail. 2016 Nov;38(10):1567-1573 [PMID: 27758121]
  35. Int Urol Nephrol. 2017 May;49(5):837-844 [PMID: 28035619]
  36. BMC Nephrol. 2017 Jan 28;18(1):41 [PMID: 28129740]
  37. Sci Rep. 2017 Aug 31;7(1):10114 [PMID: 28860665]
  38. Mol Med Rep. 2018 Jan;17(1):1253-1260 [PMID: 29115503]
  39. Iran J Med Sci. 2018 Mar;43(2):184-194 [PMID: 29749987]
  40. JAMA. 1982 Mar 12;247(10):1458-60 [PMID: 7057538]
  41. Kidney Int. 1997 Mar;51(3):728-38 [PMID: 9067905]

MeSH Term

Acute Kidney Injury
Animals
Free Radical Scavengers
Glycerol
Male
Oxidative Stress
Rats
Rats, Sprague-Dawley
Reactive Oxygen Species
Solanaceous Alkaloids
Solvents
Treatment Outcome

Chemicals

Free Radical Scavengers
Reactive Oxygen Species
Solanaceous Alkaloids
Solvents
anisodamine
Glycerol

Word Cloud

Created with Highcharts 10.0.0injurykidneyanisodaminelevelsglycerol-inducedmeasuringtreatmentatropineoxidativestressassessedserumcreatinineureahistologiccreatinekinaseIL-6AnisodamineacuteAKIcomparedratmodelwellexpressionKIM-1RhabdomyolysisevaluatedMDASODcaspase-3meandamagescoreROSgroupBACKGROUND:usedreperfusionvariousorgansstudyinvestigatedeffectivenessmechanismsactionpromotingrecoveryMETHODS:protectiveeffectsexaminedsignalingpathwaysinvolvedinflammationapoptosismolecule-1RenalanalysismalondialdehydesuperoxidedismutasetissuesInflammationquantifyinginterleukin6CD45Apoptosisnecrosisincludingcleavedcaspase3RIP3respectivelyRESULTS:GlyceroladministrationresultedhigherincreasesreactiveoxygenspeciesFurthermoreglycerolreducedtissueactivitymarkerssignificantlyimprovedHoweverlowerCONCLUSION:PretreatmentamelioratesrenaldysfunctionrhabdomyolyticreducinginflammatoryresponsecelldeathProtectiveeffectratsAcuteAtropine

Similar Articles

Cited By