Estimating Relatedness Between Malaria Parasites.

Aimee R Taylor, Pierre E Jacob, Daniel E Neafsey, Caroline O Buckee
Author Information
  1. Aimee R Taylor: Department of Epidemiology, Harvard T. H. Chan School of Public Health, Boston, Massachusetts 02115 ataylor@hsph.harvard.edu. ORCID
  2. Pierre E Jacob: Department of Statistics, Harvard University, Cambridge, Massachusetts 02138. ORCID
  3. Daniel E Neafsey: Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02142. ORCID
  4. Caroline O Buckee: Department of Epidemiology, Harvard T. H. Chan School of Public Health, Boston, Massachusetts 02115. ORCID

Abstract

Understanding the relatedness of individuals within or between populations is a common goal in biology. Increasingly, relatedness features in genetic epidemiology studies of pathogens. These studies are relatively new compared to those in humans and other organisms, but are important for designing interventions and understanding pathogen transmission. Only recently have researchers begun to routinely apply relatedness to apicomplexan eukaryotic malaria parasites, and to date have used a range of different approaches on an basis. Therefore, it remains unclear how to compare different studies and which measures to use. Here, we systematically compare measures based on identity-by-state (IBS) and identity-by-descent (IBD) using a globally diverse data set of malaria parasites, and , and provide marker requirements for estimates based on IBD. We formally show that the informativeness of polyallelic markers for relatedness inference is maximized when alleles are equifrequent. Estimates based on IBS are sensitive to allele frequencies, which vary across populations and by experimental design. For portability across studies, we thus recommend estimates based on IBD. To generate estimates with errors below an arbitrary threshold of 0.1, we recommend ���100 polyallelic or 200 biallelic markers. Marker requirements are immediately applicable to haploid malaria parasites and other haploid eukaryotes. C.I.s facilitate comparison when different marker sets are used. This is the first attempt to provide rigorous analysis of the reliability of, and requirements for, relatedness inference in malaria genetic epidemiology. We hope it will provide a basis for statistically informed prospective study design and surveillance strategies.

Keywords

References

  1. Trans R Soc Trop Med Hyg. 1999 Feb;93 Suppl 1:21-8 [PMID: 10450422]
  2. Ann Hum Genet. 1975 Oct;39(2):173-88 [PMID: 1052764]
  3. Mol Biol Evol. 2000 Oct;17(10):1467-82 [PMID: 11018154]
  4. Trop Med Int Health. 2002 May;7(5):421-8 [PMID: 12000651]
  5. Am J Hum Genet. 2003 Sep;73(3):516-23 [PMID: 12900793]
  6. Am J Hum Genet. 2003 Dec;73(6):1402-22 [PMID: 14631557]
  7. Genetics. 2004 Apr;166(4):1963-79 [PMID: 15126412]
  8. Mol Ecol. 2005 Feb;14(2):599-612 [PMID: 15660949]
  9. PLoS Genet. 2005 Sep;1(3):e32 [PMID: 16151517]
  10. Trends Parasitol. 2005 Dec;21(12):573-80 [PMID: 16236552]
  11. Genetics. 2006 Apr;172(4):2567-82 [PMID: 16387880]
  12. Nat Rev Genet. 2006 Oct;7(10):771-80 [PMID: 16983373]
  13. Nature. 2007 Oct 18;449(7164):851-61 [PMID: 17943122]
  14. Nat Rev Genet. 2008 Jun;9(6):477-85 [PMID: 18427557]
  15. Genetics. 2008 Apr;178(4):2123-32 [PMID: 18430938]
  16. Theor Appl Genet. 2008 Oct;117(6):843-55 [PMID: 18592205]
  17. Genome Biol. 2008;9(12):R171 [PMID: 19077304]
  18. Parasitology. 2009 Sep;136(10):1097-105 [PMID: 19631016]
  19. Malar J. 2009 Oct 30;8:250 [PMID: 19878560]
  20. Nat Genet. 2010 Mar;42(3):268-71 [PMID: 20101240]
  21. Am J Hum Genet. 2010 Apr 9;86(4):526-39 [PMID: 20303063]
  22. Proc Biol Sci. 2010 Aug 22;277(1693):2531-40 [PMID: 20392725]
  23. Genet Res (Camb). 2011 Feb;93(1):47-64 [PMID: 21226974]
  24. Genetics. 2012 Jan;190(1):159-74 [PMID: 21868606]
  25. PLoS Genet. 2011 Sep;7(9):e1002287 [PMID: 21966277]
  26. Genetics. 2012 Apr;190(4):1521-31 [PMID: 22267498]
  27. Genetics. 2012 Apr;190(4):1447-60 [PMID: 22298700]
  28. Mol Ecol. 2013 Jan;22(2):273-85 [PMID: 23121253]
  29. BMC Genet. 2013 Jan 07;14:2 [PMID: 23294725]
  30. Genome Res. 2013 May;23(5):843-54 [PMID: 23382536]
  31. Parasitol Res. 2013 Apr;112(4):1691-700 [PMID: 23408340]
  32. Genetics. 2013 Jun;194(2):301-26 [PMID: 23733848]
  33. Mol Ecol Resour. 2014 May;14(3):541-53 [PMID: 24299450]
  34. Heredity (Edinb). 2015 Feb;114(2):133-42 [PMID: 25370210]
  35. Nat Rev Genet. 2015 Jan;16(1):33-44 [PMID: 25404112]
  36. PLoS Genet. 2015 Apr 30;11(4):e1005131 [PMID: 25928499]
  37. Proc Natl Acad Sci U S A. 2015 Jun 2;112(22):7067-72 [PMID: 25941365]
  38. N Engl J Med. 2015 Nov 19;373(21):2025-2037 [PMID: 26488565]
  39. Genome Biol. 2015 Jul 30;16(1):155 [PMID: 27391693]
  40. Genome Res. 2016 Sep;26(9):1288-99 [PMID: 27531718]
  41. Genome Med. 2017 Jan 24;9(1):5 [PMID: 28118860]
  42. Genome Biol. 2017 Apr 28;18(1):78 [PMID: 28454557]
  43. Wellcome Open Res. 2017 Feb 14;2:10 [PMID: 28612053]
  44. Genetics. 2017 Sep;207(1):75-82 [PMID: 28739658]
  45. Mol Ecol. 2017 Oct;26(20):5820-5841 [PMID: 28815918]
  46. Wellcome Open Res. 2017 Sep 5;2:29 [PMID: 28944299]
  47. PLoS Genet. 2017 Oct 27;13(10):e1007065 [PMID: 29077712]
  48. Mol Ecol Resour. 2018 Mar;18(2):296-305 [PMID: 29143457]
  49. PLoS Comput Biol. 2018 Jan 9;14(1):e1005923 [PMID: 29315306]
  50. J Infect Dis. 2018 Aug 14;218(6):946-955 [PMID: 29718283]
  51. Malar J. 2018 May 15;17(1):196 [PMID: 29764422]
  52. PLoS Genet. 2018 May 23;14(5):e1007279 [PMID: 29791438]
  53. Clin Infect Dis. 2018 Oct 30;67(10):1543-1549 [PMID: 29889239]
  54. Am J Hum Genet. 2018 Jul 5;103(1):30-44 [PMID: 29937093]
  55. BMC Infect Dis. 2018 Aug 13;18(1):392 [PMID: 30103683]
  56. BMC Med. 2018 Oct 18;16(1):190 [PMID: 30333020]
  57. Microbiol Spectr. 2018 Nov;6(6): [PMID: 30387414]
  58. Mol Ecol. 2019 Jan;28(1):35-48 [PMID: 30462358]
  59. Elife. 2019 Apr 02;8:null [PMID: 30938289]
  60. Clin Infect Dis. 2019 Apr 8;68(8):1311-1319 [PMID: 30952158]
  61. Elife. 2019 Jul 12;8:null [PMID: 31298657]
  62. Nat Genet. 2019 Sep;51(9):1321-1329 [PMID: 31477933]
  63. Proc Natl Acad Sci U S A. 1973 Dec;70(12):3321-3 [PMID: 4519626]
  64. Genetics. 1981 Jan;97(1):145-63 [PMID: 6266912]
  65. Am J Trop Med Hyg. 1995 Jan;52(1):81-8 [PMID: 7856831]
  66. Genetics. 1996 Aug;143(4):1499-506 [PMID: 8844140]

Grants

  1. R35 GM124715/NIGMS NIH HHS
  2. U19 AI110818/NIAID NIH HHS

MeSH Term

Genome, Protozoan
Models, Genetic
Pedigree
Phylogeny
Plasmodium falciparum
Plasmodium vivax
Polymorphism, Single Nucleotide

Word Cloud

Created with Highcharts 10.0.0relatednessmalariastudiesbasedgeneticepidemiologyparasitesdifferentIBDproviderequirementsestimatespopulationsusedbasiscomparemeasuresidentity-by-stateIBSidentity-by-descentmarkerpolyallelicmarkersinferenceacrossdesignrecommendhaploidPlasmodiummodelUnderstandingindividualswithincommongoalbiologyIncreasinglyfeaturespathogensrelativelynewcomparedhumansorganismsimportantdesigninginterventionsunderstandingpathogentransmissionrecentlyresearchersbegunroutinelyapplyapicomplexaneukaryoticdaterangeapproachesThereforeremainsunclearusesystematicallyusinggloballydiversedatasetformallyshowinformativenessmaximizedallelesequifrequentEstimatessensitiveallelefrequenciesvaryexperimentalportabilitythusgenerateerrorsarbitrarythreshold01���100200biallelicMarkerimmediatelyapplicableeukaryotesCIsfacilitatecomparisonsetsfirstattemptrigorousanalysisreliabilityhopewillstatisticallyinformedprospectivestudysurveillancestrategiesEstimatingRelatednessMalariaParasitesfalciparumvivaxhiddenMarkovindependence

Similar Articles

Cited By (41)