Disease-free monoculture farming by fungus-growing termites.

Saria Otani, Victoria L Challinor, Nina B Kreuzenbeck, Sara Kildgaard, Søren Krath Christensen, Louise Lee Munk Larsen, Duur K Aanen, Silas Anselm Rasmussen, Christine Beemelmanns, Michael Poulsen
Author Information
  1. Saria Otani: Section for Ecology and Evolution, Department of Biology, University of Copenhagen, Universitetsparken 15, Building 3, 2100, Copenhagen East, Denmark. ORCID
  2. Victoria L Challinor: Section for Ecology and Evolution, Department of Biology, University of Copenhagen, Universitetsparken 15, Building 3, 2100, Copenhagen East, Denmark.
  3. Nina B Kreuzenbeck: Leibniz Institute for Natural Product Research and Infection Biology - Hans Knöll Institute, Beutenbergstraße 11a, D-07745, Jena, Germany.
  4. Sara Kildgaard: Section for Ecology and Evolution, Department of Biology, University of Copenhagen, Universitetsparken 15, Building 3, 2100, Copenhagen East, Denmark.
  5. Søren Krath Christensen: Section for Ecology and Evolution, Department of Biology, University of Copenhagen, Universitetsparken 15, Building 3, 2100, Copenhagen East, Denmark.
  6. Louise Lee Munk Larsen: Section for Organismal Biology, Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, 2000, Frederiksberg, Denmark.
  7. Duur K Aanen: Laboratory of Genetics, Wageningen University, Droevendaalsesteeg 1, 6708 PB, Wageningen, The Netherlands.
  8. Silas Anselm Rasmussen: DTU Bioengineering, Department of Biotechnology and Biomedicine, Technical University of Denmark, Søltofts Plads, Building 221, 2800, Kgs. Lyngby, Denmark.
  9. Christine Beemelmanns: Leibniz Institute for Natural Product Research and Infection Biology - Hans Knöll Institute, Beutenbergstraße 11a, D-07745, Jena, Germany. ORCID
  10. Michael Poulsen: Section for Ecology and Evolution, Department of Biology, University of Copenhagen, Universitetsparken 15, Building 3, 2100, Copenhagen East, Denmark. mpoulsen@bio.ku.dk. ORCID

Abstract

Fungus-growing termites engage in an obligate mutualistic relationship with Termitomyces fungi, which they maintain in monocultures on specialised fungus comb structures, without apparent problems with infectious diseases. While other fungi have been reported in the symbiosis, detailed comb fungal community analyses have been lacking. Here we use culture-dependent and -independent methods to characterise fungus comb mycobiotas from three fungus-growing termite species (two genera). Internal Transcribed Spacer (ITS) gene analyses using 454 pyrosequencing and Illumina MiSeq showed that non-Termitomyces fungi were essentially absent in fungus combs, and that Termitomyces fungal crops are maintained in monocultures as heterokaryons with two or three abundant ITS variants in a single fungal strain. To explore whether the essential absence of other fungi within fungus combs is potentially due to the production of antifungal metabolites by Termitomyces or comb bacteria, we performed in vitro assays and found that both Termitomyces and chemical extracts of fungus comb material can inhibit potential fungal antagonists. Chemical analyses of fungus comb material point to a highly complex metabolome, including compounds with the potential to play roles in mediating these contaminant-free farming conditions in the termite symbiosis.

Associated Data

Dryad | 10.5061/dryad.t6t12

References

  1. Appl Environ Microbiol. 2013 Sep;79(17):5112-20 [PMID: 23793624]
  2. Microb Ecol. 2016 Jan;71(1):207-20 [PMID: 26518432]
  3. Nat Biotechnol. 2012 Oct;30(10):918-20 [PMID: 23051804]
  4. Appl Environ Microbiol. 2009 Dec;75(23):7537-41 [PMID: 19801464]
  5. Mol Ecol. 2009 Feb;18(3):553-67 [PMID: 19161474]
  6. PLoS One. 2010 Sep 10;5(9): [PMID: 20844760]
  7. Mol Ecol. 1993 Apr;2(2):113-8 [PMID: 8180733]
  8. Microb Ecol. 2012 May;63(4):975-85 [PMID: 22173371]
  9. Pharmazie. 1991 Aug;46(8):613-4 [PMID: 1798724]
  10. J Biol Chem. 2001 Feb 9;276(6):4085-92 [PMID: 11053427]
  11. Chemistry. 2017 Jul 12;23(39):9338-9345 [PMID: 28463423]
  12. PLoS One. 2016 Jun 22;11(6):e0156847 [PMID: 27333288]
  13. Biol Lett. 2006 Jun 22;2(2):209-12 [PMID: 17148364]
  14. J Econ Entomol. 2015 Feb;108(1):266-73 [PMID: 26470129]
  15. Mol Ecol. 2002 Aug;11(8):1565-72 [PMID: 12144675]
  16. FEMS Microbiol Ecol. 2012 Feb;79(2):504-17 [PMID: 22092951]
  17. Mycol Res. 2009 Oct;113(Pt 10):1039-45 [PMID: 19576985]
  18. Mycologia. 2005 Jul-Aug;97(4):914-23 [PMID: 16457361]
  19. Sci Rep. 2013 Nov 19;3:3250 [PMID: 24248063]
  20. Protein Sci. 2003 Mar;12(3):438-46 [PMID: 12592014]
  21. J Chem Ecol. 2017 Oct;43(10):986-995 [PMID: 29124530]
  22. Proc Natl Acad Sci U S A. 2002 Nov 12;99(23):14887-92 [PMID: 12386341]
  23. Proc Natl Acad Sci U S A. 1999 Jul 6;96(14):7998-8002 [PMID: 10393936]
  24. Bioinformatics. 2012 Jun 15;28(12):1647-9 [PMID: 22543367]
  25. Zoolog Sci. 2005 Aug;22(8):917-22 [PMID: 16141705]
  26. BMC Evol Biol. 2007 Jul 13;7:115 [PMID: 17629911]
  27. Mol Phylogenet Evol. 2002 Mar;22(3):423-9 [PMID: 11884167]
  28. BMC Evol Biol. 2014 Jun 05;14:121 [PMID: 24902958]
  29. Org Lett. 2017 Mar 3;19(5):1000-1003 [PMID: 28207275]
  30. Proc Natl Acad Sci U S A. 2017 May 2;114(18):4709-4714 [PMID: 28424249]
  31. Curr Biol. 2005 May 10;15(9):851-5 [PMID: 15886104]
  32. Mol Ecol. 2011 May;20(9):2023-33 [PMID: 21410808]
  33. Science. 2005 Feb 4;307(5710):741-4 [PMID: 15692054]
  34. Nat Methods. 2010 May;7(5):335-6 [PMID: 20383131]
  35. Science. 2009 Nov 20;326(5956):1103-6 [PMID: 19965427]
  36. Antibiotics (Basel). 2018 Sep 13;7(3): [PMID: 30217010]
  37. Nucleic Acids Res. 1994 Nov 11;22(22):4673-80 [PMID: 7984417]
  38. Mycol Res. 2005 Mar;109(Pt 3):314-8 [PMID: 15912948]
  39. BMC Bioinformatics. 2010 Jul 23;11:395 [PMID: 20650010]
  40. Beilstein J Org Chem. 2016 Feb 19;12:314-27 [PMID: 26977191]

MeSH Term

Animals
Anti-Infective Agents
Isoptera
Life Cycle Stages
Microbial Sensitivity Tests
Principal Component Analysis
Termitomyces

Chemicals

Anti-Infective Agents

Word Cloud

Created with Highcharts 10.0.0funguscombTermitomycesfungifungalanalysestermitesmonoculturessymbiosisthreefungus-growingtermitetwoITScombsmaterialpotentialfarmingFungus-growingengageobligatemutualisticrelationshipmaintainspecialisedstructureswithoutapparentproblemsinfectiousdiseasesreporteddetailedcommunitylackinguseculture-dependent-independentmethodscharacterisemycobiotasspeciesgeneraInternalTranscribedSpacergeneusing454pyrosequencingIlluminaMiSeqshowednon-TermitomycesessentiallyabsentcropsmaintainedheterokaryonsabundantvariantssinglestrainexplorewhetheressentialabsencewithinpotentiallydueproductionantifungalmetabolitesbacteriaperformedvitroassaysfoundchemicalextractscaninhibitantagonistsChemicalpointhighlycomplexmetabolomeincludingcompoundsplayrolesmediatingcontaminant-freeconditionsDisease-freemonoculture

Similar Articles

Cited By