Comparative Genomics and Transcriptomics During Sexual Development Gives Insight Into the Life History of the Cosmopolitan Fungus .

Wonyong Kim, Brad Cavinder, Robert H Proctor, Kerry O'Donnell, Jeffrey P Townsend, Frances Trail
Author Information
  1. Wonyong Kim: Department of Plant Biology, Michigan State University, East Lansing, MI, United States.
  2. Brad Cavinder: Department of Plant Biology, Michigan State University, East Lansing, MI, United States.
  3. Robert H Proctor: Mycotoxin Prevention and Applied Microbiology Research Unit, United States Department of Agriculture, Peoria, IL, United States.
  4. Kerry O'Donnell: Mycotoxin Prevention and Applied Microbiology Research Unit, United States Department of Agriculture, Peoria, IL, United States.
  5. Jeffrey P Townsend: Department of Biostatistics, Yale University, New Haven, CT, United States.
  6. Frances Trail: Department of Plant Biology, Michigan State University, East Lansing, MI, United States.

Abstract

(formerly ) is a cosmopolitan fungus that has been reported from soil, herbivore dung, and as a fruit- and root-rot pathogen of numerous field crops, although it is not known to cause significant losses on any crop. Taking advantage of the fact that this species produces prolific numbers of perithecia in culture, the genome of was sequenced and transcriptomic analysis across five stages of perithecium development was performed to better understand the metabolic potential for sexual development and gain insight into its life history. Perithecium morphology together with the genome and transcriptome were compared with those of the plant pathogen , a model for studying perithecium development. Larger ascospores of and their tendency to discharge as a cluster demonstrated a duality of dispersal: the majority are passively dispersed through the formation of cirrhi, while a minority of spores are shot longer distances than those of The predicted gene number in the genome was similar to that in , but had more carbohydrate metabolism-related and transmembrane transport genes. Many transporter genes were differentially expressed during perithecium development in , which may account for its larger perithecia. Comparative analysis of the secondary metabolite gene clusters identified several polyketide synthase genes that were induced during later stages of perithecium development. Deletion of a polyketide synthase gene in resulted in a defective perithecium phenotype, suggesting an important role of the corresponding metabolite, which has yet to be identified, in perithecium development. Results of this study have provided novel insights into the genomic underpinning of development in , which may help elucidate its ability to occupy diverse ecological niches.

Keywords

References

  1. Fungal Genet Biol. 2016 Apr;89:37-51 [PMID: 26826610]
  2. mBio. 2018 Aug 14;9(4): [PMID: 30108170]
  3. Oncogene. 1999 May 13;18(19):3017-33 [PMID: 10378697]
  4. BMC Bioinformatics. 2011 Dec 22;12:491 [PMID: 22192575]
  5. Fungal Genet Biol. 2012 Aug;49(8):663-73 [PMID: 22705880]
  6. J Am Chem Soc. 2016 Mar 30;138(12):4249-59 [PMID: 26978228]
  7. Emerg Infect Dis. 2001 Jan-Feb;7(1):149-52 [PMID: 11266308]
  8. PLoS Genet. 2015 Sep 03;11(9):e1005486 [PMID: 26334536]
  9. PLoS One. 2012;7(5):e37859 [PMID: 22649560]
  10. Phytopathology. 2013 May;103(5):400-8 [PMID: 23379853]
  11. Bioinformatics. 2015 Jan 15;31(2):166-9 [PMID: 25260700]
  12. Immunology. 1977 Jun;32(6):1017-25 [PMID: 328380]
  13. Fungal Genet Biol. 2005 Jun;42(6):528-33 [PMID: 15878295]
  14. Mycologia. 2014 Jul-Aug;106(4):686-97 [PMID: 24891421]
  15. PLoS Pathog. 2011 Oct;7(10):e1002310 [PMID: 22028654]
  16. BMC Genomics. 2018 Apr 19;19(1):269 [PMID: 29673315]
  17. Source Code Biol Med. 2014 May 03;9:8 [PMID: 24955109]
  18. Fungal Genet Biol. 2015 Feb;75:20-9 [PMID: 25543026]
  19. Plant Cell. 1992 Jun;4(6):621-9 [PMID: 1392588]
  20. Plant Cell. 1994 Jul;6(7):935-45 [PMID: 8069105]
  21. Plant J. 2008 May;54(4):733-49 [PMID: 18476875]
  22. PLoS Genet. 2017 Jul 13;13(7):e1006867 [PMID: 28704372]
  23. Mycologia. 2005 Jan-Feb;97(1):229-37 [PMID: 16389974]
  24. Genome Biol. 2010;11(2):R14 [PMID: 20132535]
  25. Bioinformatics. 2015 Oct 1;31(19):3210-2 [PMID: 26059717]
  26. Mycologia. 2018 Jul-Aug;110(4):710-725 [PMID: 30183540]
  27. Plant Physiol. 2009 Jan;149(1):103-10 [PMID: 19126701]
  28. Appl Environ Microbiol. 2004 May;70(5):2984-8 [PMID: 15128560]
  29. BMC Genomics. 2012 Sep 27;13:511 [PMID: 23016559]
  30. Sci Rep. 2016 May 19;6:26206 [PMID: 27193384]
  31. Med Mycol Case Rep. 2013 Feb 09;2:44-7 [PMID: 24432214]
  32. New Phytol. 2009;182(2):314-30 [PMID: 19236579]
  33. Plant Signal Behav. 2008 Apr;3(4):248-50 [PMID: 19704644]
  34. Bioinformatics. 2010 Jan 1;26(1):139-40 [PMID: 19910308]
  35. Genome Res. 2003 Sep;13(9):2178-89 [PMID: 12952885]
  36. Nucleic Acids Res. 2011 Jul;39(Web Server issue):W339-46 [PMID: 21672958]
  37. PLoS Genet. 2013 Jun;9(6):e1003496 [PMID: 23818858]
  38. Bioessays. 1990 Feb;12(2):53-9 [PMID: 2140508]
  39. Fungal Genet Biol. 2012 May;49(5):405-13 [PMID: 22469835]
  40. Proc Natl Acad Sci U S A. 2005 Nov 15;102(46):16892-7 [PMID: 16263921]
  41. BMC Genomics. 2015 Jul 22;16:544 [PMID: 26198851]
  42. PLoS Comput Biol. 2011 Oct;7(10):e1002195 [PMID: 22039361]
  43. Nat Commun. 2017 Feb 08;8:14444 [PMID: 28176784]
  44. Fungal Genet Biol. 2013 Mar;52:20-31 [PMID: 23357352]
  45. Genetics. 1988 Mar;118(3):417-23 [PMID: 17246415]
  46. Plant Dis. 2014 Dec;98(12):1744 [PMID: 30703896]
  47. Can J Microbiol. 1969 May;15(5):389-98 [PMID: 5786778]
  48. Cell Rep. 2017 Jan 17;18(3):762-776 [PMID: 28099853]
  49. BMC Bioinformatics. 2008 Dec 29;9:559 [PMID: 19114008]
  50. F1000Res. 2016 Jun 17;5:1408 [PMID: 27441086]
  51. Nat Methods. 2015 Apr;12(4):357-60 [PMID: 25751142]
  52. BMC Genomics. 2013 Apr 23;14:274 [PMID: 23617724]
  53. J Clin Microbiol. 2010 Oct;48(10):3708-18 [PMID: 20686083]
  54. FEMS Microbiol Lett. 2007 Nov;276(1):12-8 [PMID: 17784861]
  55. Proc Natl Acad Sci U S A. 2008 Dec 30;105(52):20583-8 [PMID: 19104035]
  56. Nature. 1951 May 12;167(4254):773-4 [PMID: 14833400]
  57. Eukaryot Cell. 2005 Nov;4(11):1926-33 [PMID: 16278459]
  58. PLoS Genet. 2009 Aug;5(8):e1000618 [PMID: 19714214]
  59. Fungal Genet Biol. 2004 Nov;41(11):973-81 [PMID: 15465386]
  60. Methods Mol Biol. 2011;722:79-101 [PMID: 21590414]
  61. FEMS Microbiol Lett. 2012 Dec;337(2):89-96 [PMID: 22998651]
  62. mBio. 2018 Oct 2;9(5): [PMID: 30279281]
  63. Nat Genet. 2018 Dec;50(12):1688-1695 [PMID: 30349117]
  64. Nucleic Acids Res. 2018 Jan 4;46(D1):D516-D521 [PMID: 30053267]
  65. Nucleic Acids Res. 2014 Jan;42(Database issue):D490-5 [PMID: 24270786]
  66. Plant Cell. 2007 Aug;19(8):2674-89 [PMID: 17704215]
  67. Front Microbiol. 2018 Jul 16;9:1581 [PMID: 30061875]

Word Cloud

Created with Highcharts 10.0.0developmentperitheciumgenesgenomegenepathogenperitheciaanalysisstagesmetabolicsexualtranscriptomemayComparativesecondarymetaboliteidentifiedpolyketidesynthaseformerlycosmopolitanfungusreportedsoilherbivoredungfruit-root-rotnumerousfieldcropsalthoughknowncausesignificantlossescropTakingadvantagefactspeciesproducesprolificnumbersculturesequencedtranscriptomicacrossfiveperformedbetterunderstandpotentialgaininsightlifehistoryPeritheciummorphologytogethercomparedplantmodelstudyingLargerascosporestendencydischargeclusterdemonstrateddualitydispersal:majoritypassivelydispersedformationcirrhiminoritysporesshotlongerdistancespredictednumbersimilarcarbohydratemetabolism-relatedtransmembranetransportManytransporterdifferentiallyexpressedaccountlargerclustersseveralinducedlaterDeletionresulteddefectivephenotypesuggestingimportantrolecorrespondingyetResultsstudyprovidednovelinsightsgenomicunderpinninghelpelucidateabilityoccupydiverseecologicalnichesGenomicsTranscriptomicsSexualDevelopmentGivesInsightLifeHistoryCosmopolitanFungusFusariummatingtypelocus

Similar Articles

Cited By